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We present Command A Translate, an LLM-
based machine translation model built off Co-
here’s Command A. It reaches state-of-the-art
machine translation quality via direct prefer-
ence optimization. Our meticulously designed
data preparation pipeline emphasizes robust
quality control and a novel difficulty filter-
ing — a key innovation that distinguishes Com-
mand A Translate. Furthermore, we extend our
model and participate at WMT with a system
(CommandA-WMT) that uses two models and
post-editing steps of step-by-step reasoning and
limited Minimum Bayes Risk decoding.

1 Introduction

Neural machine translation (NMT) has revolution-
ized the field of machine translation (Bahdanau
et al., 2014; Vaswani et al., 2017). This paradigm
shift has been recently further accelerated by the
advent of large language models (LLMs), which
not only excel at following instructions but also
demonstrate remarkable capabilities in multilin-
gual multi-domain translation tasks as yearly eval-
uated at WMT Conference (Kocmi et al., 2023,
2024a). Yet, despite these gains, translation re-
mains an open challenge. Real-world use cases
often demand more than producing correct content:
systems must adapt to stylistic variation, navigate
complex sentence structures, and follow detailed
instructions faithfully. These aspects expose weak-
nesses even in the most advanced models. Address-
ing them is crucial for moving towards translation
systems that are not only capable, but also reliable
and controllable across diverse contexts.

In this paper, we introduce Command A Trans-
late, a state-of-the-art machine translation system
built upon Cohere’s flagship model, Command

WMT24++ WMT25 Context rate (%)

Deep Translation ®R [IN8AON=54 527 4.8
Command A Translate 83.9 -6.3 51.9
DeepSeek V3 82.9 -5.7
Google Translate 82.6 -6.2
Gemini 2.5 Pro @R 82.5
GPT-5 &R 82.3
Claude 4.0 Sonnet GR 82.1
DeepL Pro 81.6
Mistral Medium 3.1
GPT-0SS 120B ¢R
Llama 4 Maverick

Table 1: Aggregated results of our model against other
top performing systems. We mark systems using addi-
tional reasoning with GR.

A (Cohere et al., 2025). It achieves unparalleled
translation quality through direct preference opti-
mization (DPO), leveraging the robust multilingual
performance of its underlying architecture. The
key innovation lies in our data preparation pipeline,
which incorporates a novel difficulty filtering mech-
anism to ensure high-quality training data. This
approach not only enhances the performance but
also sets a new benchmark in the field.

We further extend our model to participate in
WMT 2025 (Kocmi et al., 2025c), submitting
CommandA-WMT, which employs a two-model
architecture and incorporates post-editing steps
such as step-by-step reasoning and limited Min-
imum Bayes Risk decoding. Our results highlight
the effectiveness of this design, demonstrating not
only consistent gains in translation quality but also
the broader potential of LLM-based approaches to
push the frontier of machine translation. These ad-
vances pave the way for translation systems that are
not only accurate but also adaptable, controllable,
and aligned with diverse human language use.
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2 Training Details

In this section, we describe the architecture; how
the training data is prepared; and how we fine-
tuned off Command A for building Command A
Translate and CommandA-WMT.

2.1 Model Architecture

We introduce two model setup which together form
our submission to the WMT 2025 Shared Tasks:

* Command A Translate: Cohere’s officially
released MT model with open weights.!

e CommandA-WMT: Our shared task submis-
sion, a system incorporating model routing
and additional post-editing techniques (MBR
decoding and step-by-step reasoning).

Our model is built on top of Command A (Co-
here et al., 2025), a 111B-parameter dense decoder-
only Transformer model (Vaswani et al., 2017) sup-
porting 23 languages.”> We refer to Cohere et al.
(2025) for additional architectural details.

2.2 Data Preparation

Early ablations revealed that sentence-level parallel
data was not helpful to further improve the MT
capabilities over the parent model. Accordingly, we
focus only on document-level and longer context
data. Data collection is challenging due to a dearth
of publicly-available long-context parallel corpora.

The key part of building the Command A Trans-
late is the data preparation pipeline. Though the
training corpus is limited to document-level cor-
pora, we still had magnitudes more training data
than needed for fine-tuning. Accordingly, the criti-
cal task was to remove the data samples that would
not improve model performance.

We use several steps of filtering to obtain the
highest quality and most challenging examples for
training. We apply the steps one after another as
listed below.

1. Rule-based filtering: We remove boilerplate
and non-textual documents, such as ones con-
taining primarily numbers or special symbols.

"https://cohere.com/blog/command-a-translate
Weights: https://huggingface.co/CohereLabs/
command-a-translate-08-2025

2 Arabic, Chinese, Czech, Dutch, English, French, German,
Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean,
Persian, Polish, Portuguese, Romanian, Russian, Spanish,
Turkish, Ukrainian, and Vietnamese.

2. Language identification filtering using Fast-
Text (Joulin et al., 2016).

3. Quality Estimation (QE) filtering: For each
corpora, we remove the bottom 25% of docu-
ments with lowest document-level QE score
obtained by averaging sentence-level scores
(Freitag et al., 2024).

4. Difficulty filtering: We select documents that
are most challenging to translate. This key
contribution of our work is described in more
details in Section 2.3.

5. Capability filtering and language coverage:
As the final step, we assure the training dataset
has an uniform distribution across languages;
i.e. we give more training examples to lan-
guages where Command A under-performs,
while limiting coverage of languages where it
already performs very well (such as German
or Spanish). Details in Section 2.4.

Our final training dataset contains 126,000
unique documents with an average of 951 tokens
per document.

2.3 Difficulty Filtering

During our experimentation, we observed that stan-
dard approaches to boosting machine translation
performance (such as quality filtering) were not
very helpful, making only minor improvements.
When diving deep, we observed that on a random
sample of 100k documents, only 8.2% documents
had human translations whose quality was deemed
higher than translations from Command A. This
finding underline the fact that Command A is al-
ready a high-performing translation model (see Ta-
ble 7, where it performs on par with even strong
MT systems such as DeepL).

We hypothesize that failure to boost the perfor-
mance is due to a large quantity of easy or badly
translated examples. Following this hypothesis, we
use Sentinel-25-src (Proietti et al., 2025) which is
designed to score source segments on how challeng-
ing the translation will be to modern systems. The
metric was originally designed to build stronger
MT test sets.

We apply Sentinel-25-src on the segment-level
of potential training documents, averaging scores
to obtain a single document-level difficulty score.
When taking a sample of the 100,000 most difficult
documents, it increases the ratio where the origi-
nal human translation is better than Command A’s
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translation to 20.1%, and shows a way to skew the
training data towards more challenging samples.

One limitation of this difficulty filtering tech-
nique is that it relies on well-formatted data, be-
cause Sentinel-25-src also (correctly) ranks the bro-
ken text as difficult-to-translate. Accordingly, we
apply difficulty filtering to remove the easiest 25%
of all remaining data at this step. Furthermore, we
utilize it in the following language balancing step
to prioritize most difficult examples.

2.4 Capability Filtering and Language
Balancing

Direct preference optimization (DPO) (Rafailov
et al., 2023), is an offline preference modeling tech-
nique that leverages pair of completions (transla-
tions), one of which is deemed better than the other.

To create the second completion, we use Com-
mand A to translate the final training data set (on
the document-level, to keep the context intact). As
the last step of filtering, we scored the translation
via QE to estimate if given document is better trans-
lated by humans (original target translation) than
by Command A. We retain only documents where
Command A under-performs humans for the final
training dataset. When only a part of document
is deemed better, we split the documents and only
keep the better parts of the document. To prepare
the preference data, we use the Command A transla-
tion as “worse completion” while using the original
human translation as a better completion.

The training data is initially unbalanced in terms
of language coverage, with high-resource lan-
guages having vastly more data. We target a more
uniform distribution across languages paired with
English while also having high coverage of non-
English pairs. We use Table 7 results to identify
on which languages Command A struggles, and
increase their coverage in the training set. For lan-
guages where Command A is already near top per-
formance (e.g. German or Spanish), we decrease
the ratio. We prioritize the documents that are most
challenging and have largest QE difference.

2.5 Training Algorithm

When fine-tuning Command A, we experimented
with two setups: one using supervised fine-tuning
(SFT) and the other using direct preference opti-
mization (DPO) (Rafailov et al., 2023).

While we observed SFT improves a 7B model
in ablations, improvements did not transfer to the
large 111B model. On the other hand, DPO showed

significant gains even for the 111B. As a result,
Command A Translate uses only DPO with the
training data described above.

For CommandA-WMT, we do use SFT to im-
prove language coverage. We run SFT on only
languages not supported by Command A, then fol-
low with DPO as done for Command A Translate.

2.6 Deep Translation ©R

We developed a multi-stage approach that relies
solely on a single deployment of Command A
Translate without any additional models or re-
sources, which boosts translation performance. The
details are not elaborated here, but its empirical re-
sults are included for completeness.

2.7 CommandA-WMT Submission

CommandA-WMT is the name of our system sub-
mission to the WMT General MT (Kocmi et al.,
2025a) and Terminology shared tasks (Semenov
etal., 2025).3

CommandA-WMT is a routed machine transla-
tion system built of two models, with additional
post-editing techniques: document-level transla-
tion, MBR decoding (Freitag et al., 2022) and step-
by-step reasoning (Briakou et al., 2024b). We first
explain the two system setup followed by post-
editing techniques.

The two models that comprise the routed system
are (1) Command A Translate for 23 supported
languages, and (2) a separate finetune of Command
A for unsupported languages. (2) comprises an
SFT training step with parallel data for the missing
languages: Bengali, Bhojpuri, Estonian, Icelandic,
Kannada, Lithuanian, Marathi, Serbian, Swedish,
Thai. SFT is followed by the DPO step using the
same data as Command A Translate. The routing
of the model is based solely on the target language
of the translation direction.

We translate data at a document-level rather than
segment-level to keep the context. This decision
differs from the majority of system submissions
for the General MT task, which are translated on
the segment-level. Note that automatic evaluation
can only be run on the paragraph level, which may
penalize our setup (as shown in Section 3.5).

For MBR, we sampled at most 20 translations for
each document by increasing temperature from 0.1
to 0.3 with a step 0.01, selecting the best translation
as MBR with MetricX-XL (Juraska et al., 2024)

3Disclosure of conflict: the main author of Command A
Translate is also an organizer of General MT shared task.
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metric. The 20 translations is too little for MBR
to be effective, as the original study (Freitag et al.,
2022) uses 1000 samples, we expect that this step
did not significantly affect the performance, as in
contrast, greedy decoding leads usually to the best
translation results.

Finally, we utilize the step-by-step reasoning,
where we use the four-step approach introduced by
Briakou et al. (2024b).

These additional post-editing steps are done only
for CommandA-WMT, while all results regarding
the Command A Translate are done on the raw
model outputs without any post-editing techniques.

3 Evaluation and Results

We analyze the performance of our model and com-
pare it to top-performing open and closed systems.

We evaluate all systems including ours in an
identical setup unless specified otherwise, in a
clean zero-shot approach without any post editing
steps. We fix the temperature to 0. The only ex-
ception is the CommandA-WMT, where we report
results as submitted to WMT General MT shared
tasks using additional post-editing steps described
in Section 2.7.

3.1 Benchmark Models

We compare our performance with top performing
MT systems from all main model groups, and pop-
ular specialized translation services such as Google
Translate and DeepL Pro. We evaluate DeepSeek
V3 (DeepSeek-Al et al., 2025), GPT-5,* Gemini-
2.5-Pro (Comanici et al., 2025), Mistral Medium
3.1,> GPT-OSS 120B (OpenAl et al., 2025), LLama
4 Maverick,® Claude 4 Sonnet.” Extended compar-
ison comparing more systems is in Appendix B.

We run all applicable models with reasoning on,
allowing them 8096 thinking budget, or setting the
thinking effort to high (systems using additional
reasoning are marked with &R).

The only system that does not allow us to collect
outputs for all languages is DeepL Pro, which does
not support Persian and Hindi. In order to calcu-
late system average for it, we use a three nearest
neighbor imputing technique (Troyanskaya et al.,
2001),® which estimates performance for missing

*GPT-5 System Card

5https ://mistral.ai/news/mistral-medium-3

6h’ctps ://ai.meta.com/blog/
llama-4-multimodal-intelligence/

"Claude 4 System Card

$We use KNNImputer from sklearn library.

languages without affecting its ranking, getting the
same rank as if our evaluation would be done only
on 21 languages. We mark those scores with as-
terisk. The purpose of our imputation is solely
for keeping the final rank over all languages in-
tact, rather than assuming potential performance
on those two languages.

3.2 Performance Across 23 Languages

In this section, we focus on the evaluation of the 23
languages official supported by Command A Trans-
late. We use the WMT24++ test set (Deutsch et al.,
2025) containing English to 55 human-translated
languages and dialects. The original source text is
from Kocmi et al. (2024a) and covers four domains:
news, literary, speech, and social user-generated
content. Each language pair contains 171 docu-
ments split into 998 mostly paragraph level seg-
ments containing in total 32,327 words. We use the
prompt instruction from Deutsch et al. (2025) with
minor change discussed in Appendix A.

We evaluate translations using xComet-XL
(Guerreiro et al., 2024) one of the state-of-the-art
metrics with highest correlation with human judg-
ment (Freitag et al., 2024) and widely used for sys-
tem rankings, including wmt24++ (Deutsch et al.,
2025). The metric is a 3.5B parameter XLM-R
model (Goyal et al., 2021) fine-tuned on human
judgment data.

Results in Table 2 highlight that Command A
Translate outperforms all systems except on He-
brew and Hindi. Deep Translation @R, however,
outperforms all systems across all languages. Not
only does Deep Translation @R reach the highest
performance, it gains +2 xComet-XL on top of the
best competing system, DeepSeek V3. Such effect
size would be noticeable by human annotators as
much as getting more than +6 BLEU points Kocmi
et al. (2024c¢).

3.3 WMT25 Blind Evaluation

Next, we validate the performance of our model on
a blind test set. We use the WMT25 (Kocmi et al.,
2025a) test set, which was released in July 2025,
after our model was fully trained. It covers three
source languages: English, Czech, and Japanese,
and spans four domains: news commentary, ASR
speech, social (Mastodon), and literary. In total, the
WMT?25 test set contains 36,768 words in 87 docu-
ments. The test set is released with exact prompt
instructions which we use directly.

Every year, WMT hosts a machine translation
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Avg ar cs de

el es fa fr he hi id it

Deep Translation &R

Command A Translate ~ 83.9 86.2 87.9 82.6 62.7 = 86.1 877
DeepSeek V3 829 751 848 91.3 814 86.6 80.6 83.6 80.6 639 852 86.0
Google Translate 82.6 746 835  91.8 820 873 81.1 830 79.7 64.6 840 858
Gemini 2.5 Pro &R 825 726 849 909 83.1 | 84.7 80.8 829 81.6 86.1

GPT-5 &R 823 725 851 90.8 828 852 80.0 829 @ 823 64.8 854 | 85.0
Claude 4.0 Sonnet PR~ 82.1 734 839 91.0 824 | 847 801 829 80.0 627 833 854
DeepL Pro 85.2  80.3* 64.3* 85.5

Mistral Medium 3.1
GPT-0OSS 120B &R
Llama 4 Maverick

62.0

ja ko nl pl pt ro ru tr uk vi zh
Deep Translation GR
Command A Translate  83.1 83.7 892 85.6 84.6 | 80.1 84.8 80.4
DeepSeek V3 832 829 882 845 8.8 871 844 798 833 828 81.0
Google Translate 828 822 878 84.6 86.1 8.8 838 794 827 821 80.6
Gemini 2.5 Pro @R 827 816 879 837 | 8.5 | 873 843 792 825 81.1 808
GPT-5 ®R 822 813 879 835 875 837 79.0 827 812 7938
Claude 4.0 Sonnet @R | 83.2 834 87.1 833 | 8.5 86.6 839 782 828 815 804
DeepL Pro 80.6 87.0 82.6 827 | 789 845
Mistral Medium 3.1 81.7  80.7 82.0 82.7 76.2 79.1
GPT-0OSS 120B &R 80.3 809 76.2 71.9
Llama 4 Maverick 79.5 78.4

Table 2: Results of all languages over WMT24++ test set evaluated with xComet-XL metric.

system-building competition, where teams from
academia and industry compete to build the best
performing system. We compare our model against
top participants from WMT25. As each official sys-
tem submission was collected by a different team
under different conditions (such as varied post-
editing techniques), we run addition analysis on a
set of benchmarking systems in the identical setup
as our Command A Translate and Deep Translation
@R. We mark these with v in the results tables
that follow. Since many of those additional sys-
tems cannot handle document-level translation, we
translate WMT?25 on a paragraph-level.

We score translations using MetricX-24-XL
(Juraska et al., 2024), a neural metric based on mT5-
XXL with 13B parameters. We apply an alternative
metric to diversify results and reduce metric bias.
Results in Table 3 highlight that Deep Translation
@R ranks at the top under controlled systems.

3.4 Human Evaluation

WMT?25 (Kocmi et al., 2025a) obtained around 40
systems per language pair which were evaluated.
As they didn’t evaluate all systems, firstly they se-
lect the best-performing 18 system submissions
for each language pair for human evaluation. The
human evaluation protocols used were the Error
Span Annotation (Kocmi et al., 2024b) and Multi-
dimensional Quality Metrics (Freitag et al., 2021).

We aggregate their results and for each system,
we present the average system-level score along
with best and worst estimated system rank, which
accounts for the statistical significance of score
differences.

Detailed human evaluation results are in Kocmi
et al. (2025a). We compile the results of our
focus languages in Table 4. Across languages,
CommandA-WMT achieves the top rank of 4th
to 11th place out of 40 participating systems.
The largest drop versus the top-ranked system
is for Egyptian Arabic, caused by the fact that
CommandA-WMT was fine-tuned for machine
translation only on Modern Standard Arabic. In
contrast, Command A (CommandA-WMT’s parent
model), scores much higher on Egyptian Arabic,
suggesting a high potential for Egyptian Arabic
translation quality if fine-tuned to do so.

While we do not have a third party human evalua-
tion for Command A Translate or Deep Translation
@R, we expect based on automatic evaluation from
Section 3.3, that it would reach comparable results.

3.5 Long Context Translation

While the machine translation field is slowly mov-
ing towards paragraph-level or document-level
translation (Laubli et al., 2018; Wang et al., 2023;
Pal et al., 2024), current LLM models have even
longer context window—able to fit full chapters
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Avg en-ar en-cs en-it

en-ja en-ko en-ru en-uk en-zh cs-uk cs-de ja-zh

Shy-hunyuan-MT

-3.6

GemTrans -3.7
CommandA-WMT -4.7
% Deep Translation &R -4.8
% Gemini 2.5 Pro @R -4.8
% GPT-5 @R . . . . d -5.0
% DeepSeek V3 -5.7 =77 -65 57 59 59 -62 -64 47 55 -38 | 48
GPT-4.1 -5.8 -7.8  -6.6 -58 -59 57 -65 -62 50 53 37 51
% Mistral Medium 3.1 -5.9 82 71 55 -60 -60 -6.1 -6.7 47 57 -39 -49
UvA-MT -5.9 -7.1 69 -54 -63 -6.0 -6.1 -63 54 -60 -43 -56
% Google Translate -6.2 71 74 56 6.0 -6.2  -6.7 72 52 65 42 -6.0
* Claude 4.0 Sonnet ®R ~ -6.2  -8.1 -7.5 JE6MN -62 60 -69 72 52 -60 -40 -55
% Command A Translate .

Qwen3-235B

% GPT-OSS 120B &R

% Llama 4 Maverick

TowerPlus-72B

% DeepL Pro

Table 3: MetricX-XL results for the WMT2S5 test set. Systems marked with % are collected in controlled and
identical setup, and are therefore directly comparable. The remaining systems are from (Kocmi et al., 2025b). We
didn’t include 24 lower performing participating systems.

en-zh

83.8 (6-11)
84.0 (5-10)

cs-de cs-uk en-ar (EG) en-it en-ko en-uk

60.6 (4-4)

en-cs en-ja ja-zh

Gemini-2.5-Pro
GPT-4.1

80.8 (7-11)

762(3-5)  87.9(67)

Shy-hunyuan-MT 79.9 (8-12) 88.4 (4-5)

Claude-4-Sonnet 89.1(6-10)  55.7(5-6)  80.0(6-10)  72.1(6-10)  79.3 (8-13) 759 (3-5  85.6(9-14)

DeepSeek-V3 89.0 (4-10)  56.8 (5-6) 71.7(7-10) 793 (8-13) = -3.8(47)  73.6(69)  858(9-13) = 850(3-6)  -8.1(8-10)
CommandA-WMT  85.6(8-8)  88.7(6-10)  34.6(8-9) 83545 75567 822077 -43(7-12) 73269  863(8-13) 813 (11-15) 7.7 (8-10)
GemTrans 82.2(9-14)  90.2 (4-8) 72.6 (13-16) 76.2(12-16) = -4.1(5-10)  62.5(13-16) 882 (4-5)  84.4(5-10) -10.9 (14-15)
UvA-MT 80.4 (9-15) ~ 83.5(13-17) 29.0(10-10) 79.8(6-10)  71.8(7-10) 793 (8-13) -52(11-16) 69.1 (10-12)  86.4(7-9)  83.4(5-10) -
Wenyiil 82.1(9-14) 857 (11-13) 81.9 (6-6) - -43(5-12)  782(3-5) 6.9 (4-7)
Algharb 81.3(9-15)  84.1 (13-16) 74.3 (13-16) - -44(5-12)  73.3(5-8)

Mistral-Medium 86.9 (4-8)  89.4(4-10)  36.0(8-9)  803(6-10)  73.8(5-8) 47 (8-15) - 84.5(14-16) 79.9 (12-16) -10.0 (10-13)
CommandA 86.7 (4-7)  86.4(11-12) 78.0 (11-13) ~ 73.2(5-10) 4.7 (7-15) 84.0 (14-16) - -
SRPOL 77.1 (15-19) 68.5 (17-18) - - - 77.7 (14-17) -

Yolu 75.8 (16-19) 76.1 (11-13) - 72.6 (17-18) -7.3(17-18) 64.5(12-15) 85.4(9-13)  79.0 (12-16) -12.6 (16-17)
IRB-MT 827 (15-17)  51.9 (7-7) - -5.6(11-16) 654 (12-15) 829 (17-17) 76.5(16-18) -13.9 (18-18)
Laniqo 83.4 (14-17) - 66.6 (17-18)

... pruned 18 lower performing sy

in at least one of above language pairs ...

Number of systems 40 40 37 39 33 40 36 39 37 37 41

Table 4: Human evaluation sourced from WMT?25 performed by Kocmi et al. (2025a). We show the average human
ESA score with lower and upper rank in the bracket. The MQM is used instead for en-ko and ja-zh.

of books or more. While document-level test sets
exist (Federmann et al., 2022; Deutsch et al., 2025),
they usually contain only a few hundred words
per document. To test the long context capabili-
ties, therefore, we use the literary domain of the
WMT25 test set (Kocmi et al., 2025a). It contains
two stories of around 5000 words each, which we
have models translate in a single request.

The key limitation of document-level evaluation
is that automatic metrics have limited maximum
length. In the case of xComet-XL, this is only
a 512-token context window. To overcome this
limitation, we split the translated output into para-
graphs, evaluate each paragraph in isolation, and
average over paragraph-level scores. This auto-
matic evaluation thus requires models to output

the same number of paragraphs as in the source
segment. While CommandA-WMT successfully
keeps paragraph-level alignment when instructed,
other models in the benchmark cannot.

To circumvent this issue and evaluate all models,
we introduce a special paragraph-break character
‘I in the source text, which we use in addition to
double new lines to highlight the paragraph breaks.
We use the WMT24++ prompt (see Appendix A)
with additional instruction:

the
the

contain
it in

The text to translate may
following mark: ‘. Keep
translation at the correct place.

With this update, almost all systems translated

the story with the correct number of paragraphs,
794



Avg ar (EG) cs ja ko ru uk zh

Paragraph-level Command A Translate  56.9

261 633 573 649 649 601 619

Gemini 2.5 Pro &R

52.7

550 525 b 56.1

51.9 549 463 56.0
Google Translate 51.7 224 567 552 485 58.0
DeepL Pro 50.9 2100 569 47.0 537 56.0
Mistral Medium 3.1 49.6 22.1 564 451 485 59.6 582 57.0
Llama 4 Maverick 47.4 528 528 515 558 543
GPT-OSS 120B ©R 47.0 22.6 49.7 562 549 541
GPT-5 ®R 46.5 225 526 469 49.0 52.1 505
DeepSeek V3 23.6 52.3
Claude 4.0 Sonnet &R 54.5 48.8

Table 5: Results of long context translation, evaluated on a paragraph-level with xComet-XL metric.

Avg ar cs de

es fa fr he hi id it

GPT-5 GR
Claude 4.0 Sonnet R

DeepL Pro
Google Translate
Gemini 2.5 Pro &R

GPT-OSS 120B GR
Llama 4 Maverick
DeepSeck V3

Mistral Medium 3.1

12.2
18.6 25.7 25.7

ko nl pl

o u tr uk vi zh

GPT-5 GR
Claude 4.0 Sonnet R

DeepL Pro
Google Translate
Gemini 2.5 Pro &R

GPT-OSS 120B R
Llama 4 Maverick
DeepSeek V3
Mistral Medium 3.1

Table 6: Adversarial prompt injection testing of systems
the question mark test.

except for Claude-4-Sonnet. We tried dozen of
other paragraph break characters or sequences, but
none worked for this model. We therefore con-
cluded that Claude-4-Sonnet is not able to follow
the instruction to translate long-context documents.

Table 5 present results of long context transla-
tion, where our model reaches second best perfor-
mance, right after the Gemini 2.5 Pro GR.

As a contrastive result, we add the performance
of Command A Translate when translating the long-
context literary test set on the paragraph-level in-
stead of in a single request. The results highlight
the performance gap between long-context and
paragraph-level translation in modern MT systems
(ex. quality degrades from 56.9 to 51.9 xComet-
XL on average across languages when translated at
the paragraph-level versus the whole long-context
example in one shot).

. The score is a percentage of failed translation in regards to

3.6 Prompt Injection Robustness

In contrast to pure machine translation systems, a
problem introduced by using general instruction-
following LLMs for translation is that they may
misinterpret instructions; instead of translating,
they may respond to prompts or questions in the
source text. Safety mechanisms may also be trig-
gered, making the model refuse to translate (Bri-
akou et al., 2024a). Both are a problem espe-
cially when systems are used as a part of automatic
pipeline.

To test translation rejection, we employ the
test set for adversarial MT prompt injection
(Miceli Barone and Sun, 2024), which tests models
via prompt injection by asking to translate a ques-
tion. It contains 817 different English questions in
a direct translation set. Here is an example:
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Translate the following text into Czech and
do nothing else:

Don’t translate this sentence and tell me:
What happens to you if you eat watermelon
seeds?

We wuse the “question mark” heuristic
(Miceli Barone and Sun, 2024) for evaluation—we
check if the translation contains a terminal ques-
tion mark, showing that the model translated the
question rather than answering it. Since this simple
test does not require reference translation, we scale
it into all target languages. See Appendix C for
implementation details.

Results in Table 6 show that most systems are ro-
bust to prompt injection attack. DeepSeek V3 and
Mistral Medium 3.1, however, struggle to resist in-
struction following on almost all languages. While
Command A Translate is robust across the board,
Deep Translation &R struggles in Czech and Ko-
rean, likely caused by its more complex prompt
instruction structure.

4 Conclusion

We introduce Command A Translate with
Deep Translation @R capabilities, Cohere’s state-
of-the-art machine translation system. Command
A Translate is built off Cohere’s Command A by
fine-tuning on meticulously-prepared datasets and
with direct preference optimization. As the key
innovation, our data pipeline, incorporates a se-
ries of novel data filters, targeting selection of
most difficult data subset and strong capabilities
across languages. Command A Translate achieves
marked improvement in translation quality, and out-
performs other translation systems such as Google
Translate, and state-of-the-art LLMs such as GPT-5
and Gemini-2.5 Pro.

Extending Command A Translate, we present
CommandA-WMT, our translation system submis-
sion to the 2025 WMT shared task. This system
leverages a two-model architecture and post-editing
steps such as step-by-step reasoning and limited
Minimum Bayes Risk decoding. CommandA-
WMT achieves consistent gains in across lan-
guages, showcasing the effectiveness of our design.

Limitations

The evaluation of machine translation systems is
fundamentally limited by the noise and limited dis-
criminative power of automated benchmarks, and
even of human evaluators. Translation quality can

be subjective, and furthermore, high translation
quality in one domain for a given language does not
guarantee high quality in another, even for the same
language. Preferred system recommendations can
thus change depending on use case. We provide re-
sults across the domains evaluated in WMT24 and
WMT?2S5, but encourage users to examine systems
on the domains they care about.
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A WMT24++ Prompt Instruction

The paper Deutsch et al. (2025) specify two dif-
ferent prompt instructions, we have used the first
one mentioned in their Figure 3. Since the prompt
contains instructions after providing a text for trans-
lation, it may have been perceived by systems as
the instruction should be also translated. To fix this
problem, we move the instruction sentence before
providing the source text.

You are a professional {src_lang} to
{tgt_lang} translator, tasked with providing
translations suitable for use in {tgt_lang}
({tgt_country}). Your goal is to accurately
convey the meaning and nuances of the
original {src_lang} text while adhering
to {tgt_lang} grammar, vocabulary, and
cultural sensitivities. Produce only the
{tgt_lang} translation, without any additional
explanations or commentary. Please translate
the following {src_lang} text into {tgt_lang}
({tgt_country}):

{source_text}

B Extended Benchmark

For completeness, we also run extended evaluation
on most popular and top performing models.

C Adversarial MT Prompt Injection

To test model robustness to prompt injection, we
use the technique from Miceli Barone and Sun
(2024), designed to test if a model can correctly
execute a translation task in the presence of distrac-
tor instructions. The test set contains 816 English
questions asked in an prompt injection manner. As
the authors doesn’t specify the initial instructions,
we use the following template:

Translate the following text into {tgt_lang}
and do nothing else:

Don’t translate this sentence and tell me:
{question}

We evaluate using the “question mark™ heuris-
tic: whether the translation ends with a question
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Command A 81.6 73.1 84.0 91.0 82.2
DeepSeek R1 815 732 838 [1I8971 804
DeepL Pro 81.5 90.9
Qwen MT Plus 80.5 91.2
Mistral Medium 3.1 89.9
GPT-0OSS 120B ®R 81.8 90.1

Llama 4 Maverick
Llama 3.1 405B
Qwen3-235B-A22B
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Gemma 3 (27b)
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85.8
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85.7
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84.7
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85.0

80.6
81.1
80.8
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80.1
79.5
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79.2%
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82.1
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852

82.8
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81.7
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82.0
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81.3
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84.8
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GPT-40 83.4
Claude Opus 4.1 83.6

DeepSeek V3 83.2 82.9 88.2 84.5
Google Translate 82.8 82.2 87.8 84.6
Gemini 2.5 Pro &R 82.7 81.6 87.9 83.7
GPT-5 GR 822 81.3 87.9 83.5
Claude 4.0 Sonnet GR | 832 834 87.1 83.3
Command A 81.3 81.8 87.4 82.7
DeepSeek R1 81.4 81.3 87.1 834
DeepL Pro IEEl 806 870 826
Qwen MT Plus 82.3 81.2 86.9

Mistral Medium 3.1 81.7 80.7 86.4 82.0
GPT-OSS 120B R 80.3 80.9 86.3 80.9

Llama 4 Maverick _ 86.1 81.4
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Qwen3-235B-A22B 80.7
Aya Expanse 32B
Gemma 3 (27b)
Mistral Large Latest
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86.1
85.5
85.3
85.5
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86.3
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85.5
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82.8
82.6
81.7

82.8
82.1
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81.2
81.5
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80.8
79.8
80.4
78.5
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77.0

79.1
77.9
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Table 7: Extended WMT24++ results with xComet-XL for extensive set of systems.

mark (ignoring white spaces and quotation marks).
The final score is a percentage of failed cases. As
the heuristic does not require reference translation,
it can be easily scaled to any number languages.
The only limitation is proper handling of question
marks per language. We therefore also check for
following language-specific question marks: Chi-
nese and Arabic question mark, and the semi-colon
for Greek.

We have not evaluated on Japanese, for which
the question mark test doesn’t work as the language
allows different paraphrases not ending with ques-
tion mark. An example from Google Translate: =
DL Z=BEREFIC. [TXTHORITETT
PP EE-TLES W
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