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Abstract

This paper describes the CUNI submissions to the
WMT?25 General Translation task, namely for the
English to Czech, English to Serbian, Czech to
German and Czech to Ukrainian language pairs.
We worked in multiple teams, each with a different
approach, spanning from traditional, smaller Trans-
former NMT models trained on both sentence and
document level, to fine-tuning LLMs using LoRA
and CPO. We show that these methods are effec-
tive in improving automatic MT evaluation scores
compared to the base pretrained models.

1 Introduction

We have entered the shared task as a number of
small teams with different approaches, each with
its own submission. We will describe the datasets,
methods and evaluation results of each submission
in the following sections. Here we will present just
a brief overview of all the systems we submitted.

CUNI-MH-v2 is a constrained system trained
on partially synthetic data sampled from the CzEng
2.0 (Kocmi et al., 2020) dataset using LoRA (Hu
et al., 2021) and Contrastive Preference Optimiza-
tion (Xu et al., 2024). We will release both the
model weights and the filtered training data. The
model itself is fine-tuned from the EuroLLM-9B-
Instruct model. We currently only support two lan-
guage directions, (en—cs) and (cs—de), and offer
separate LoRA adapters for each. The translations
were done on the paragraph level.

CUNI-EdUKate-v1 is an unconstrained system
trained on educational domain data using LoRA,
SFT, and Contrastive Preference Optimization. It
is also fine-tuned from the EuroLLM-9B-Instruct
model. It only supports cs2uk language direction
and, unlike CUNI-MH-v2, both training and infer-
ence were done on sentence level.

CUNI-SFT models were created by a simple su-
pervised finetuning using LoRA on a small amount
of publicly available training data.

CUNI-Transformer and CUNI-
DocTransformer are resubmissions of systems
from previous years.

2 Methods

This section describes the approaches used for train-
ing our submissions.

2.1 CUNI-SFT (en2cs, en2sr, cs2uk)

We have finetuned multiple pretrained models for
document-level and sentence-level translation us-
ing LoRA. We have used learning rate lr = 2e — 4,
LoRAranksr =8 andr = 16, LoORA a =2 *r
and batch size of 2 with 16 gradient accumula-
tion steps, resulting in effective batch size of 32.
We trained the models for 10k updates. We com-
pared sentence-level translation without context,
sentence-level with context shown to the LLM
and pure document-level prompt. The prompts
are shown in Section A.

2.2 CUNI-MH-v2 (en2cs, cs2de)

Considering that EuroLLM-9B-Instruct is already
reasonably good at English to Czech translation,
we chose to skip the supervised fine-tuning stage,
thereby departing from year’s CUNI-MH (Hrabal
et al., 2024), and fine-tuned the model solely using
Contrastive Preference Optimization (CPO) (Xu
et al., 2024).

For the two language directions, (en—cs) and
(cs—de), we trained separate LoRA adapters with
rank r = 32, LoRA a = 64, LoRA dropout of
0.05 and effective batch size of 8. We used cosine
learning rate scheduler and trained for 10 k steps.

2.3 CUNI-EdUKate-v1 (cs2uk)

CUNI-EdUKate-v1 was trained from EuroLLM-
9B-Instruct model using LoRA in two stages. In
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the first stage, we train it on internal sentence-level
educational domain parallel data. In the second
stage, we train it on partially synthetic internal
preference sentence-level educational domain data.

2.4 CUNI-(Doc)Transformer (cs2uk, en2cs)

CUNI-Transformer (cs—uk) and CUNI-
DocTransformer (en—cs) are the same systems
as submitted in previous years (Jon et al., 2023),
relying on standard NMT training with Block
backtranslation (Popel, 2018; Popel et al., 2020)
and (in the case of CUNI-DocTransformer)
document-level training.

3 Data

3.1 CUNI-SFT

We downloaded corpora for Czech to En-
glish, Croatian, Serbian', Bosnian, German
and Ukrainian and English to Croatian, Ser-
bian, German and Ukrainian from OPUS,
keeping the document boundaries where
possible.  The datasets we used are: DGT,
DocHPLT, ELITR-ECA, EMEA, GlobalVoices,
JRC-Acquis, News-Commentary, SETIMES,
StanfordNLP-NMT, Tatoeba, TED2020,
tico-19, TildeMODEL and WMT-News. We scored
these datasets with wmt22-cometkiwi-da QE
model using Marian. We have selected the top
5% scoring documents (scores are computed on
sentence-level and averaged) from each dataset
for each direction, with at most 200 documents
per dataset and direction. Documents longer than
60 sentences are split into 60-sentence chunks for
scoring and training.

3.2 CUNI-MH-v2

In order to create the preference dataset necessary
for the CPO method, we first sampled paragraphs
from the CzEng 2.0 dataset and translated them
using different models. For en—cs dataset, we used
EuroLLM-9B Instruct and CUNI-MH from last
year. We also used the reference translations as one
of the possible candidate translations. For cs—de
dataset, we used EuroLLM-9B Instruct, Qwen 2
and Qwen 3.

We then scored the translations (all synthetic
candidates and the reference for the en—cs direc-
tion) using MetricX24 (used as a reference-free
metric). From this, we created (source, preferred,

'We transliterated all Serbian texts written in Cyrillic into
the Latin script.

dis-preferred) triplets by taking the highest-scoring
translation as preferred and worse scored transla-
tions as possible dis-preferred translations.

Unlike the dataset used in previous year, where
we gradually built paragraphs sentence by sentence
(Hrabal et al., 2024), this year we chose to select
the preference on the level of whole documents.

We further filtered these triplets using a version
of our work-in-progress experimental metric based
on Gemma 3 27b-it model, which we refer to as
rl.1. We assigned the MetricX24 and r1.1 scores
to each translation candidate. Afterwards, we con-
sidered the best candidate with the best MetricX24
score as preferred and all other candidates as dis-
preferred. Out of those pairs, we kept only those
that met the following criteria:?

1. The chosen and rejected translations differ.

2. MetricX24(chosen) is  better  than
MetricX24(rejected) by at least 1.0 points.

3. MetricX24(chosen) < 10.0.

4. r1.1(chosen) — r1.1(rejected) > 1.0.

The resulting en—cs dataset consists of 25530
preference triplets, and the cs—de dataset consists
of 14797 preference triplets. All datasets and mod-
els will be available on Hugging Face:

* en—cs preference dataset: https:
//huggingface.co/hrabalm/

CUNI-MH-v2-encs-data

* cs—de preference dataset:
//huggingface.co/hrabalm/
CUNI-MH-v2-csde-data

https:

* en—Cs trained model:
//huggingface.co/hrabalm/
CUNI-MH-v2-encs

https:

e cs—de trained model:
//huggingface.co/hrabalm/
CUNI-MH-v2-csde

https:

3.3 CUNI-EdUKate-v1

For the CUNI-EdUKate-vl model, we used our
internal sentence-level Czech-Ukrainian parallel
dataset covering the educational domain. This

“Note that here we work with the raw MetricX24 outputs,
which are greater than or equal to 0, and where lower is better.

681


https://huggingface.co/hrabalm/CUNI-MH-v2-encs-data
https://huggingface.co/hrabalm/CUNI-MH-v2-encs-data
https://huggingface.co/hrabalm/CUNI-MH-v2-encs-data
https://huggingface.co/hrabalm/CUNI-MH-v2-csde-data
https://huggingface.co/hrabalm/CUNI-MH-v2-csde-data
https://huggingface.co/hrabalm/CUNI-MH-v2-csde-data
https://huggingface.co/hrabalm/CUNI-MH-v2-encs
https://huggingface.co/hrabalm/CUNI-MH-v2-encs
https://huggingface.co/hrabalm/CUNI-MH-v2-encs
https://huggingface.co/hrabalm/CUNI-MH-v2-csde
https://huggingface.co/hrabalm/CUNI-MH-v2-csde
https://huggingface.co/hrabalm/CUNI-MH-v2-csde

Table 1: CUNI-MH-v2 en—cs performance on the development set. MetricX24 is google/metricx-24-hybrid-xI-
v2p6-bfloat16. CometKiwi22 is Unbabel/wmt22-cometkiwi-da. r1.1 is our internal metric based on Gemma 3 27b-it

assigning DA scores.

wmt23 wmt23-para
Model BLEU MetricX24 CometKiwi22 rl.1 BLEU MetricX24 CometKiwi22 rl.1
CUNI-MH 36.52 - 83.16 - 3542 - 74.82 -
EuroLLM-9B-Instruct  36.14 —3.74 82.90 89.66 36.69 —7.68 72.67 88.98
CUNI-MH-v2 37.33 —3.69 83.38 90.36 37.81 —7.53 73.75 91.81

Table 2: CUNI-MH-v2 en—cs performance compared with selected WMT24 models on the WMT24 test set.

wmt24
Model BLEU MetricX24 CometKiwi22 rl.1
Unbabel-Tower70B 24.72 -3.70 83.04 88.54
Claude-3.5 32.04 —4.62 80.79 90.56
CUNI-MH 27.62 —4.53 81.10 88.21
EuroLLM-9B-Instruct  26.04 —4.77 80.51 &7.19
CUNI-MH-v2 27.89 —4.62 80.99 87.85

dataset is the only reason why our submission is
unconstrained.

The creation of the preference dataset for the
CPO stage was done in a similar way to the CUNI-
MH-v2 model but using different selection of mod-
els to generate translation candidates and to score
and filter them.

One notable difference was that we also trained
EuroLLM-9B-Instruct to predict Direct Assesment
scores and used the result as one of the models used
to filter the preference triplets.

As a development set, we used 3770 segments
split from the training data.

4 Evaluation

4.1 CUNI-SFT

We compared translation quality after finetuning
across four pretrained models: EuroLLM 9B, Aya
Expanse 8B, Mistral Instruct ve.3 7B
and Granite 3.3 8B. We measured BLEU (Pa-
pineni et al., 2002) and chrF (Popovié, 2015) on
newstest2019 (Barrault et al., 2019) in the En-
glish to Czech direction, NTREX (Federmann
et al., 2022) for English to Serbian and wmttest24
(Kocmi et al., 2024) for Czech to Ukrainian. The
result for simple sentence-level and context-aware
sentence-level prompts are shown in Table 3. We
do not present results for the doc-level prompt,
since we were not able to retrieve sentence-level
alignment for source and translated sentences.

Overall, we see that our approach to finetuning
is effective for languages that are not well covered
by the base model. For high resource combinations
(e.g. eng-ces in EuroLLM), the finetuning does
either not change the evaluation scores, or decreses
them.

4.2 CUNI-MH-v2

During inference, we use vLLM and greedy decod-
ing.

In Table 1, we show the performance of the
en—cs CUNI-MH-v2 model on the development
set. In Table 2, we compare its performance with
best performing WMT23 models on WMT23 test
set.

Interestingly, we can see that CUNI-MH-v2
improves in BLEU score compared to the base
EuroLLM-9B-Instruct model, while we saw the
opposite happen in the previous year (Hrabal et al.,
2024), where the BLEU/chrF metrics got worse
while the COMET?22 and CometKiwi22 metrics
improved. On the other hand, CUNI-MH-v2
gets higher CometKiwi22 score on sentence-level
wmt23 dataset but lower score on the document-
level version. Overall, we were able to achieve
modest improvements in all metrics compared to
the base model on both the development and test
set.

For translation of the final WMT2S5 test set, we
use the official script provided by WMT organizers
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Context Language

Base Finetuned

Model BLEU ChrF BLEU ChrF

aya-expanse-8b 259 578 233 518

eng-ces EuroLLM-9B-Instruct 299  56.7 28,5 56.2
granite-3.3-8b-instruct 22.1 51.5 185 473
Mistral-7B-Instruct-v0.3 169 483 158 443
aya-expanse-8b 3.3 20.9 7.3 352

Yes eng-srb EuroLLM-9B-Instruct 154  46.6 15.6 46.6
granite-3.3-8b-instruct 3.1 17.2 42 298
Mistral-7B-Instruct-v0.3 2.3 14.8 11.2 404
aya-expanse-8b 273 562 255 520

cesukr EuroLLM-9B-Instruct 28.7 56.4 26.8 54.7
granite-3.3-8b-instruct 7.0 317 69 276
Mistral-7B-Instruct-v0.3 15.7  47.7 13.3 39.0
GPT-4.1-mini 337  61.7 - -

aya-expanse-8b 254 518 264 549

eng-ces EuroLLM-9B-Instruct 31.7 59.0 31.1 59.1
granite-3.3-8b-instruct 21.8 512 22.1 515
Mistral-7B-Instruct-v0.3 13.0 434 20.2 497
GPT-4.1-mini 325 592 - -

No aya-expanse-8b 8.8 38.0 17.1 47.9
eng-srb EuroLLM-9B-Instruct 169 483 226 524
granite-3.3-8b-instruct 6.7 34.8 152 456
Mistral-7B-Instruct-v0.3 9.1 41.2 174 479
GPT-4.1-mini 293 579 - -

aya-expanse-8b 243 551 244 519

ces-ukr EuroLLM-9B-Instruct 31.0  59.0 282 558
granite-3.3-8b-instruct 6.6 444 105 353
Mistral-7B-Instruct-v0.3 134 398 192  46.0

GPT-4.1-mini 335 61.6 -

Table 3: BLEU and ChrF scores of base and finetuned CUNI-SFT models on devsets (newstest2019 for eng-ces and

eng-srb, wmttest2024 for ces-ukr.

to extract paragraph-level segments. During the
inference, we further split the paragraphs to chunks

Table 4: CUNI-EdUKate-v1 automatic metric scores on
internal educational domain sentence-level development

of at most 256 tokens by using the sentence-splitter set.
Python library.
dev set

4.3 CUNI-EdUKate-vl Model BLEU MetricX24
We show the automatic metrics of the CUNI- EuroLLM-9B-Instruct 37.4 —3.59
EdUKate-vl model in Table 4. The EuroLLM- CUNI-EdUKate-v1 39.1 ~3.33
9B-Instruct model, which is also the base model, is
used as a baseline.

models:
5 Tools

CUNI-MH-v2

To give a proper credit, we list the tools we used

during the development and inference with our
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* transformers (Wolf et al., 2020), peft (Man-



grulkar et al., 2022) and trl (von Werra et al.,
2020) libraries for training

e vLLM (Kwon et al., 2023) for inference

 MetricX24 XL3 (Juraska et al., 2024) for scor-
ing, data filtering, evaluation

* DSPy (Khattab et al., 2024, 2022) and
Gemma-3-27b-it (Team et al., 2025) for data
filtering

CUNI-EdUKate-v1
* transformers, peft and trl libraries for training
e vLLM for inference

* LINDAT Translation* for segmentation and to
serve the translation API

* CometKiwi22 (Rei et al., 2022) for scoring,
data filtering, evaluation

* MetricX24 XL for scoring, data filtering, eval-
uation

* Gemma-3-27b-it for data filtering
CUNI-SFT

* transformers, peft and trl libraries for training

* vLLM for inference

* CometKiwi22> used through Marian (Junczys-
Dowmunt et al., 2018) for data filtering

CUNI-(Doc)Transformer

e Tensor2Tensor (Vaswani et al., 2018)

6 Future work

We have several ideas to improve the performance
of the future iterations of our CUNI-MH-v2 model.
In particular, we plan to scale up the size of the
preference dataset by using a larger portion of
CzEng2.0 and by sampling more translation candi-
dates.

We also plan on experimenting with including
synthetically translated documents with no ref-
erence translations, to augment our dataset with
longer examples.

Shttps://huggingface.co/google/
metricx-24-hybrid-x1-v2p6-bfloat16

4https://github.com/ufal/lindat—translation/

Shttps://huggingface.co/Unbabel/
wmt22-cometkiwi-da-marian

7 Conclusion

In this paper, we presented the CUNI sub-
missions to the WMT25 General Translation
Task, covering English—Czech, Czech— German,
English—Serbian, and Czech—Ukrainian lan-
guage pairs. Future work will focus on scaling
preference datasets and leveraging longer-context
translation scenarios.
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A CUNI-SFT Model Prompt Template

We have compared three ways of formatting the
input. We present the corresponding prompts here.
Sentence-level:

Translate this {source_lang} sentence to
{target_lang}: {line}

Sentence-level with document context:
We need to translate one line from a
{source_lang} conversation into {target_lang}.
Source document: {document_src}
Already translated: {previous_translations}

Translate literally (no explanations) this
line: {line}

Document-level:

Translate from {source_lang} to {target_lang}:
{document}"
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