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Abstract

Sign language translation (SLT) is typically
trained with text in a single spoken language,
which limits scalability and cross-language gen-
eralization. Earlier approaches have replaced
gloss supervision with text-based sentence em-
beddings, but up to now, these remain tied to
a specific language and modality. In contrast,
here we employ language-agnostic, multimodal
embeddings trained on text and speech from
multiple languages to supervise SLT, enabling
direct multilingual translation. To address data
scarcity, we propose a coupled augmentation
method that combines multilingual target aug-
mentations (i.e. translations into many lan-
guages) with video-level perturbations, improv-
ing model robustness. Experiments show con-
sistent BLEURT gains over text-only sentence
embedding supervision, with larger improve-
ments in low-resource settings. Our results
demonstrate that language-agnostic embedding
supervision, combined with coupled augmen-
tation, provides a scalable and semantically ro-
bust alternative to traditional SLT training.1

1 Introduction

Sign languages (SLs) are inherently visual and cul-
turally embedded. Each SL has evolved indepen-
dently and is closely tied to the communities and
spoken languages of its region. As a result, most
sign language translation (SLT) datasets are built
around a single sign–spoken language pair (e.g.,
DGS→German), which makes it difficult to scale
models across languages or to combine datasets.
Training a system for a new target language typi-
cally requires a separate model and fresh parallel
data collection.

Historically, SLT systems have relied on man-
ually provided gloss supervision (Camgoz et al.,

1We release the code, models, and features
to facilitate further research. Github repository:
https://github.com/DFKI-SignLanguage/sonar-slt.git;
Huggingface: https://huggingface.co/mtmlt

Figure 1: Text-only vs. language-agnostic sentence
embedding supervision.

2018), discrete word-like labels whose design and
availability are language-, culture-, and region-
specific. Even gloss-free SLT approaches assume
that sign inputs should be supervised by text from
the co-occurring spoken language, keeping the
learning signal tied to a single language (Gong
et al., 2024; Wong et al., 2024; Chen et al., 2024;
Hamidullah et al., 2022) and limiting cross-dataset
reuse and generalization.

Recent work by Hamidullah et al. (2024) has
reduced the reliance on glosses by supervising
SLT with text-based sentence embeddings. This
yields better semantic alignment, but the embed-
dings remain modality-specific and typically re-
quire dataset-specific fine-tuning. Furthermore,
compared to large pre-trained models that exploit
vast text corpora, these text-only embeddings show
limited cross-lingual transfer and reduced robust-
ness. This raises the key question: Can language-
agnostic, multimodal sentence embedding super-
vision replace text-only alignment in SLT? We
hypothesize that language-agnostic, multimodal
sentence embeddings can reduce the residual de-
pendence on text. Concretely, we build on SONAR
(Duquenne et al., 2023), a pretrained multilingual
and multimodal embedding space that jointly rep-

https://github.com/DFKI-SignLanguage/sonar-slt.git
https://huggingface.co/mtmlt
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resents text and speech. SONAR embeddings are
claimed to be language-agnostic. Our approach
aligns sign representations directly with language-
agnostic semantic vectors, thereby decoupling su-
pervision from any specific spoken language and re-
moving the need for glosses. Our model integrates
multiple modalities and supports direct supervi-
sion across all 200 languages covered by SONAR
(see Figure 1). In contrast to prior systems that
relied on additional stages or separate models for
multi-target translation, our method enables direct
translation into multiple languages within a single
model.

A major obstacle for SLT is the scarcity of
annotated data. Recent work on self-supervised
pre-training from unannotated or anonymized data
(Rust et al., 2024) has shown promise in addressing
this challenge. This motivates our second question:
Can target-language augmentation further allevi-
ate data scarcity and enhance robustness, particu-
larly when combined with video augmentation?

Our coupled multiple target language and
video perturbation augmentation strategy ad-
dresses these challenges by combining (i) target-
language augmentation, which pairs each sign sam-
ple with parallel sentences in multiple languages,
and (ii) video augmentation, which perturbs the
visual stream through spatial, temporal, and photo-
metric transformations. These augmentations are
complementary: multiple target-language augmen-
tation strengthens semantic supervision without re-
quiring new sign recordings, while video augmen-
tation improves the invariance of the sign encoder.
Together, they yield a more robust SLT model and
provide a scalable, semantically grounded alter-
native to traditional training, unifying supervision
across languages and modalities while reducing
dependence on language-, culture-, and region-
specific annotations. In all, our contributions can
be summarized as:

• Language-agnostic supervision. We align
signs to a multilingual, multimodal embed-
ding space, removing reliance on language-
specific text or glosses.

• Coupled augmentation. We jointly apply
multilingual target augmentation and video
perturbations to improve robustness and re-
duce data scarcity.

• Direct multilingual decoding. Our model
translates into multiple spoken languages in a

single step, without pivots or extra fine-tuning.

• Open-source resources. We release a Hug-
ging Face–compatible visual extension of
SONAR and model port to enable repro-
ducibility and further work.

2 Related Work

2.1 Sign Language Representation
Traditional SLT systems rely on glosses —textual
labels that represent signs— as an intermediate
representation. MSKA-SLT (Guan et al., 2025)
remains a strong baseline using glosses, reporting
∼29 BLEU on PHOENIX-2014T (Camgoz et al.,
2018). However, glosses are neither universal nor
standardized: they are tightly coupled to specific
languages, cultures, and regions. Moreover, pro-
ducing gloss annotations is highly time-consuming,
requiring expert linguistic knowledge (Müller et al.,
2023b).

In parallel, gloss-free SLT has emerged, enabling
training on weakly annotated datasets exceeding
1,000 hours for some sign languages (Uthus et al.,
2023).2 Hamidullah et al. (2024) aligns sign lan-
guage videos with sentence-level text embeddings.
This supervision avoids feeding long, fine-grained
frame sequences to the decoder, thereby reducing
redundancy in video features, lowering the need
for aggressive masking, and encouraging learning
at the sentence-semantic level. While intermediate
supervision of visual blocks is common in multi-
modal models, compressing video into a sentence-
level embedding before decoding improves seman-
tic grounding and flexibility in target text genera-
tion. Nevertheless, current approaches (Hamidul-
lah et al., 2024; Gueuwou et al., 2025b) remain
limited by their reliance on text-only embedding
spaces with restricted language coverage, constrain-
ing augmentation and cross-sign transfer.

2.2 Large Language Models in SLT
Complementary approaches leverage large lan-
guage models (LLMs). SignLLM (Gong et al.,
2024) discretizes videos into tokens and prompts a
frozen LLM; Sign2GPT (Wong et al., 2024) feeds
pseudo-glosses to XGLM, reporting ∼22 BLEU on

2A weakly annotated dataset provides only coarse or noisy
supervision. For instance, YouTube-ASL datasets are col-
lected from online videos where annotations rely solely on
automatically generated or the provided subtitles, without
manual realignment, leading to potential inaccuracies and
temporal misalignments.
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Figure 2: Overall architecture of our SONAR-SLT model. Visual inputs are processed through spatial and spatio-
temporal encoders, fused using (Hwang et al., 2025) and encoded into a semantic vector aligned with multilingual
sentence embeddings.

PHOENIX-2014T and ∼15 BLEU on CSL-Daily.
SpaMo (Hwang et al., 2025) employs a straightfor-
ward approach that extracts spatial and motion fea-
tures from sign language videos and utilizes a low-
rank adapter to fine-tune an LLM for sign language
translation. Chen et al. (2024) introduced FLa-
LLM, a two-stage, gloss-free framework that first
pre-trains the visual encoder and then fine-tunes
a pre-trained LLM for the downstream SLT task.
These methods inherit LLM fluency but are largely
monolingual and require substantial tokenization
and training overhead. In contrast, our PEFT-based
SONAR adapters maintain multilinguality without
retraining a large decoder on discretized video to-
kens. More recent work has explored large-scale
pre-training to improve sign language understand-
ing, with Uni-Sign (Li et al., 2025) proposing a uni-
fied generative framework that treats downstream
tasks as SLT and incorporates prior-guided fusion.

2.3 Multilingual SLT Datasets and Models

Despite these advances, large-scale multilingual
datasets (Uthus et al., 2023; Yazdani et al., 2025b)
remain scarce and noisy. Crawled web data in-
creases coverage but introduces label and align-
ment errors that current models struggle to absorb,
leading many studies to focus on a single language
or a small set of cleaner corpora. Additionally, per-
formance often varies widely even within the same
language due to differences in feature pipelines and
recording conditions.

Multilingual SLT models also remain in their
early stages. MLSLT (Yin et al., 2022) covers ten
European sign languages via a routing mechanism,
while JWSign (Gueuwou et al., 2023) scales to

98 languages with language-ID tokens. More re-
cently, Sign2(LID+Text) (Tan et al., 2025) incor-
porated token-level language identification with a
CTC loss, achieving competitive results. In ad-
dition, Yazdani et al. (2025a) explored continual
learning for multilingual SLT. Recent work applies
heavy pre-processing (Gueuwou et al., 2025b,a),
sometimes obscuring whether improvements arise
from better SLT modeling or dataset-specific engi-
neering. Both gloss-based and gloss-free methods
perform best when signer distance, camera setup,
and motion characteristics closely match training
conditions.

3 Methodology

3.1 System Overview

We propose SONAR-SLT, a modular SLT frame-
work that decouples semantic understanding from
text generation. As illustrated in Figure 2, the sys-
tem first maps an input sign language video into a
multilingual, multimodal semantic space, and then
(optionally) decodes from this space into a cho-
sen spoken language. This design allows training
on heterogeneous sign language datasets, supports
multilingual supervision, and removes the need for
gloss annotations. A detailed architecture is pre-
sented in Appendix A.1 and summarized in the
next subsections.

3.2 Visual Feature Extraction and Encoding

The first stage maps raw video frames into a com-
pact visual embedding. Let x = (f1, . . . , fT ) de-
note a sign language video of T frames. We extract
per-frame spatial features st with ViT (Dosovitskiy



304

et al., 2020) and spatio-temporal motion features
mt with VideoMAE (Tong et al., 2022). These
are fused through a lightweight block (1D Conv
followed by a multi-layer perceptron) F (Hwang
et al., 2025):

ht = F(st,mt) , t = 1, . . . , T. (1)

A Transformer-based encoder Ev contextualizes the
sequence:

z1:T = Ev(h1:T ). (2)

Finally, temporal pooling (mean or attention) pro-
duces a global visual embedding z ∈ Rd:

z = Pool(z1:T ). (3)

3.3 Semantic Alignment
Next, we align sign-derived embeddings with multi-
lingual textual embeddings. We adopt a pretrained
multilingual, multimodal sentence encoder E (i.e.,
SONAR). Given a reference sentence y, we obtain
its semantic embedding:

s = Etxt(y) ∈ Rd. (4)

The visual encoder is trained to align z with s.
Alignment can be done via a squared ℓ2 loss as per
(Duquenne et al., 2023; Hamidullah et al., 2024):

Lsem =
∥∥z− s

∥∥2
2
. (5)

We also consider a cosine similarity loss,

Lcos = 1 − ⟨z, s⟩
∥z∥2 ∥s∥2

, (6)

used either alone (Lsem = Lcos) or combined with
the MSE above:

Lsem = α ∥z− s∥22 + β Lcos, α, β ≥ 0.
(7)

Target-language augmentation. To enforce
language-agnostic supervision, each reference sen-
tence is paired with K translations {y(k)}Kk=1 (from
the embedding decoder). At each iteration, one
translation y(k) is sampled and encoded as s =
Etxt(y(k)).

3.4 Multilingual Generation from the
Semantic Vector

We then decode into natural language from the
semantic embedding. A pretrained decoder D from
SONAR generates text from a semantic vector and

a target language token ℓ. Conditioned on the sign-
derived and semantically text-aligned (Section 3.3)
embedding z, the decoder is trained with teacher
forcing:

Lce = −
Ty∑

t=1

log pθ(yt | y<t, z, ℓ) . (8)

3.5 Auto-Encoding (Decoder Anchoring)
To keep the decoder aligned to the pretrained se-
mantic space, we introduce an auto-encoding step.
Specifically, the decoder reconstructs the target sen-
tence directly from its text-derived embedding s:

Lae = −
Ty∑

t=1

log pθ(yt | y<t, s, ℓ) . (9)

This mirrors SONAR’s original training and pre-
vents drift, while the visual encoder learns to
project videos into the same space.

3.6 Optional Contrastive Alignment
We optionally strengthen alignment through a sym-
metric InfoNCE loss (van den Oord et al., 2018).
For a batch {(zi, si)}Ni=1, we define similarity as
sim(a,b) = a⊤b

τ (temperature τ > 0, optional ℓ2
normalization). The corresponding loss is:

Lnce =
1

2N

N∑

i=1

[
− log

exp(ẑ⊤i ŝi/τ)∑N
j=1 exp(ẑ

⊤
i ŝj/τ)

− log
exp(ŝ⊤i ẑi/τ)∑N
j=1 exp(ŝ

⊤
i ẑj/τ)

]
.

(10)

3.7 Joint Training Objective
The final loss combines all components:

Ljoint = λsem Lsem + λce Lce

+ λae Lae + λnce Lnce, (11)

with non-negative weights λi (setting λnce = 0
disables the contrastive term).

3.8 Cross-Lingual and Multi-Sign Dataset
Fusion

Finally, we leverage the language-agnostic seman-
tic space for dataset fusion. Because supervision is
defined independently of any specific spoken lan-
guage, videos from different sign languages can be
trained jointly with textual supervision in any avail-
able language. For example, German sign language
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Dataset Language Domain #Videos #Sent. Vocab. Split (train/dev/test)

PHOENIX-2014T DGS → German Weather Forecast ∼7k ∼8k ∼3k 7,096 / 519 / 642
CSL-Daily CSL → Chinese Daily Communication ∼20k ∼25k ∼5k 18,401 / 1,078 / 1,057

Table 1: Characteristics of the datasets used in our experiments.

videos annotated in German can be re-aligned with
English, French, or Chinese translations via E ,
allowing unified training across datasets such as
PHOENIX-2014T and CSL-Daily. This enables
direct multi-target translation without glosses and
facilitates fusion of heterogeneous sign-language
corpora.

4 Experiments

4.1 Datasets

We evaluate our approach on the following
datasets:

• PHOENIX-2014T (Camgoz et al., 2018):
German Sign Language (DGS) weather fore-
cast videos with parallel German text.

• CSL-Daily (Zhou et al., 2021): A Chinese
Sign Language (CSL) corpus tailored for sign-
to-Chinese SLT, emphasizing interactions in
daily communication contexts.

Statistics of both datasets are summarizes in Ta-
ble 1.

4.2 Evaluation Metrics

We evaluate our method following (Müller et al.,
2022; Müller et al., 2023a), using BLEU3 (via
SacreBLEU (Post, 2018)) for lexical overlap,
ROUGE (Lin, 2004)4 for recall-oriented n-gram
overlap, and BLEURT (Sellam et al., 2020)5 for
semantic quality.

4.3 State-of-the-art Systems

We evaluate our method against several strong re-
cent state-of-the-art systems within the gloss-free
paradigm. CSGCR (Zhao et al., 2021) improves
SLT accuracy and fluency through three modules:
word existence verification, conditional sentence
generation, and cross-modal re-ranking for richer
grammatical representations. GFSLT-VLP (Zhou
et al., 2023) leverages vision–language pretraining,

3BLEU|nrefs:1|bs:1000|seed:16|case:
mixed|eff:no|tok:13a|smooth:exp|version:2.4.0

4ROUGE|L|nrefs:1|tok:13a|case:mixed|version:1.5.5
5BLEURT v0.0.2 using checkpoint BLEURT-20.

while FLa-LLM (Chen et al., 2024) adopts a two-
stage gloss-free pipeline that first pre-trains the vi-
sual encoder and then fine-tunes a pre-trained LLM
for SLT. Sign2GPT (Wong et al., 2024) maps vi-
sual inputs to pseudo-gloss sequences and decodes
them with GPT-style language modeling, whereas
SignLLM (Gong et al., 2024) discretizes sign fea-
tures into visual tokens to prompt a frozen LLM.
SEM-SLT (Hamidullah et al., 2024) aligns sign lan-
guage videos with sentence embeddings and serves
as the foundation of our work. For multilingual
settings, Sign2(LID+Text) (Tan et al., 2025) com-
bines token-level sign language identification with
a CTC objective to generate spoken text.

4.4 Implementation Details
• Feature Extraction. We begin by processing
each sign language video x = {f1, f2, . . . , fT } as
a sequence of T RGB frames. From each frame,
we extract:

• Spatial Features (st): Using a Vision Trans-
former (ViT (Dosovitskiy et al., 2020)) pre-
trained on ImageNet.

• Motion Features (mt): Using VideoMAE
(Tong et al., 2022).

These features are then fused via the visual fusion
block F from SpaMo to yield a joint representation
ht for each timestep.

• Training the visual block (LoRA). We train
the visual block using LoRA with:

• LoRA: r = 16, α = 32

• Batching: batch size 4, gradient accumula-
tion 2, on 8 GPUs in parallel

• Loss weights:

– λce = 0.1 (auxiliary soft translation signal)
– λsem = 1.0 (primary objective)
– λcos = 2.7 (stabilizes angular alignment)
– λnce = 0.0

– λmse = 7000.0 (strong magnitude regular-
izer)
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Because our model operates on embedding vec-
tors with small magnitudes, the MSE loss can
rapidly fall to ∼ 10−5 even when cosine similar-
ity remains suboptimal. Empirically, we observed
that cosine and MSE only begin to correlate at
∼ 10−6. Optimizing cosine alone often stalls, as
MSE ceases to decrease, while optimizing MSE
alone improves fidelity but does not guarantee angu-
lar alignment. To address this, we up-weight MSE
to maintain shrinkage and retain a non-negligible
cosine term to enforce directional consistency. We
also experimented with InfoNCE, but under our ef-
fective batch size (with few hard negatives) it led to
slower convergence and negligible improvements
and we do not use it in our final experiments.

• Sentence embedding pooling. The original
SONAR pools by running a shallow decoder: it
feeds a special token (the EOS id in M200M100) as
input and uses the encoder outputs as hidden states;
the first decoder output is taken as the sentence
embedding. During the Visual Block training, we
adopt this approach with a shallow decoder initial-
ized from the first three SONAR decoder layers
and train it only for pooling. This supplies lan-
guage context during pooling, while the incoming
features themselves are language-agnostic (from
another modality). Text generation is then condi-
tioned on the target language.

• Visual representation. We adopt the best-
performing visual representation strategies re-
ported in prior work, noting that optimal choices
vary across datasets. To ensure comparability in
our multi–sign language experiments, we restrict
evaluation to datasets with similar video settings
and select the strongest corresponding model. The
SpaMo Visual Block performs best with global,
high-quality cues e.g., high-resolution videos with
a moderate signer–camera distance (CSL-Daily),
or lower-resolution videos where the signer is close
and centered (PHOENIX-2014T). Consequently,
we conduct multilingual experiments on CSL-Daily
and PHOENIX-2014T.

• Training the translation model with visual fea-
tures. We train the end-to-end translation system
(with the Visual Block or the fused spatial+motion
features) using the same LoRA configuration as
above.

• Batching & schedule: batch size 8 on a single
GPU

– CSL-Daily: cosine learning-rate schedule
with a peak LR of 3× 10−4

– PHOENIX-2014-T (monolingual): con-
stant LR (we found it more stable)

• Text augmentation. To expand the
datasets using NLLB (NLLB Team,
2024), we machine-translate the target
texts into three high-resource languages
(English, French and Spanish) using the
facebook/nllb-200-distilled-600M
model.

• Video augmentation. Coupled with the
target-language augmentation, we also perturb
the input videos so that each training instance
is presented with both linguistic and visual
variability. At each iteration, one augmented
variant is sampled. In this work we restrict
ourselves to:

– frame_mask_ratio = 0.2

– frame_dropout_prob = 0.2

– add_noise_std = 0.04

– shuffle_window = 3

5 Results and Analysis

5.1 Comparative Analysis

We compare our approach with other gloss-free
methods on both PHOENIX-2014T and CSL-Daily
datasets in Table 2. Our method shows a clear ad-
vantage on the semantics-oriented BLEURT metric.
It reaches a BLEURT of 0.545, outperforming the
sentence-based supervision model using text-only
sentence embedding (SEM-SLT). BLEURT uses
a BERT-based scorer and is designed to capture
meaning and fluency, unlike BLEU and ROUGE,
which primarily measure n-gram overlap. More-
over, our model outperforms previous monolin-
gual and multilingual systems on CSL-Daily in
terms of BLEU and achieves comparable results on
PHOENIX-2014T.

• Observed gaps. We observe a decrease in
BLEU compared to the SEM-SLT system, which is
expected since our model is not fine-tuned on sign-
language text. Our language-agnostic, sentence
embedding-based supervision preserves semantics
without requiring fine-tuning on specific dataset: it
goes beyond surface n-gram matching to produce
translations that are contextually accurate, gram-
matically correct, and cross-lingually robust. Part
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Method PHOENIX-2014T CSL-Daily

BLEU BLEURT RG BLEU BLEURT RG

Monolingual
CSGCR (Zhao et al., 2021) 15.18 – 38.85 – – –
GFSLT-VLP (Zhou et al., 2023) 21.44 – 42.29 11.00 – 36.44
FLa-LLM (Chen et al., 2024) 23.09 – 45.27 14.20 – 37.25
Sign2GPT (Wong et al., 2024) 22.52 – 48.90 15.40 – 42.36
SignLLM (Gong et al., 2024) 23.40 – 44.49 15.75 – 39.91
SEM-SLT (Hamidullah et al., 2024) 24.10 0.481 – – – –

Multilingual
Sign2(LID+Text) (Tan et al., 2025) 24.23 – 50.60 14.18 – 40.00
SONAR-SLT (Ours) 22.01 0.545 41.44 16.23 0.561 42.29

Table 2: Comparison of SONAR-SLT with other gloss-free models on PHOENIX-2014T and CSL-Daily (metrics:
BLEU, BLEURT, ROUGE (RG)). Unreported metrics are left blank; SONAR-SLT sets the best reported BLEURT
on PHOENIX-2014T and remains strongly competitive with several LLM-based baselines on both datasets.

Resource Language BLEU

High
Spanish (es) 22.3
French (fr) 22.6
English (en) 21.6

Low
Turkish (tr) 13.1
Malagasy (mg) 11.8
Persian (fa) 8.7

Table 3: SONAR-SLT performance across target lan-
guages in both high- and low-resource settings on
PHOENIX-2014T, reported using BLEU scores.

of the remaining gap stems from dataset capture
conditions. Our feature extractor (Hwang et al.,
2025) is tuned for global cues and can be less ac-
curate in cases where fine-grained articulations,
such as facial expressions and finger movements,
are critical. Recent top systems address this with
keypoint-based representations and extensive pre-
processing (Gueuwou et al., 2025b), which help
preserve these fine-grained details.

• Multilingual and multi–sign language. We
evaluate target-side augmentation, where language
translations are included in training. Results
for both low- and high-resource languages on
PHOENIX-2014T are presented in Table 3. In our
experiments, we augmented the target set in train-
ing with three high-resource languages—French,
Spanish, and English—while the model was eval-
uated on other unseen languages. Using this aug-
mented target set yields a modest improvement
over training with a single target language. How-
ever, we observe a gap in performance between

high- and low-resource languages, which primarily
stems from lower reference translation quality in
the low-resource languages.6 The narrow domain
of PHOENIX-2014T can also introduce dataset-
specific idiosyncrasies, complicating fair compar-
isons.

Table 4 shows that pre-training on concatenated
multi-sign corpora followed by monolingual fine-
tuning proves most effective. In contrast, joint
multi-sign fine-tuning risks resembling another full
training run without yielding substantial gains. In
our experiments, we first pre-train on the combined
data and then fine-tune monolingually, consistent
with (Hamidullah et al., 2024); post-fine-tuning
performance remains largely unchanged (see Ta-
ble 4, mono vs. multilingual setup). Differences
in dataset capture conditions still matter—for ex-
ample, methods that rely solely on global visual
features can underperform when fine-grained artic-
ulations, such as hand or facial details, are crucial.
Pipelines that integrate keypoints with extensive
preprocessing (Gueuwou et al., 2025b) help miti-
gate such losses and achieve stronger results.

5.2 Multitask Learning Effect on the Visual
Block

The effect of sentence-embedding supervision is
strongest when the Visual Block is still learning
feature representations. Once the block has con-
verged—or is pretrained—the additional impact
of cosine or MSE objectives diminishes. This oc-
curs because cross-entropy loss often remains rel-

6Reference translations were obtained using
facebook/nllb-200-distilled-600M model.
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PHOENIX-2014T CSL-Daily

Type Variant BLEURT BLEU RG BLEURT BLEU RG

M
ul

ti VB pretrained 0.523 21.52 41.10 0.561 16.23 42.29

VB scratch 0.508 21.38 42.03 0.472 14.68 42.12

VB frozen 0.516 21.56 41.39 0.549 16.06 41.95
M

on
o VB pretrained 0.545 22.01 40.52 0.558 16.07 42.13

VB scratch 0.490 19.79 39.95 0.447 14.14 40.59

VB frozen 0.520 21.56 41.44 0.529 15.70 41.79

Table 4: SONAR-SLT results for the Visual Block (VB) variants under Multilingual and Monolingual settings
on PHOENIX-2014T and CSL-Daily. Metrics include BLEURT, BLEU, and ROUGE (RG); best scores per
dataset/metric are in bold.

atively high (above 2–3), while MSE rapidly falls
to O(10−5) and cosine similarity saturates around
∼ 0.3.

In contrast, introducing the auto-encoding loss
provides a second cross-entropy signal, which ex-
erts a stronger influence on the Visual Block. Here,
intermediate supervision continues to be beneficial,
and the auto-encoding objective itself accelerates
convergence. We consistently observed this ef-
fect in CSL-Daily and in the augmented translation
setup on PHOENIX-2014T.

5.3 Qualitative and Semantic Error Analysis
• Qualitative analysis. Table 5 shows exam-
ples of two contrasting outcomes: cases where
the model accurately captures the intended mean-
ing and cases where it fails. When contextual un-
derstanding is incomplete, the decoder frequently
compensates by generating fluent continuations via
next-token prediction. This behavior is characteris-
tic of SLT systems that rely on pretrained language
models as decoders: they can mask weaknesses in
semantic grounding by producing outputs that are
coherent but only partially faithful to the source.
As a result, improvements in BLEU may reflect
the decoder’s ability to recover plausible sentences
rather than true gains in sign-to-text comprehen-
sion. Therefore, exact sequence matching met-
rics such as BLEU are insufficient and in some
cases misleading for evaluating translation quality
in SLT.

Language-specific tendencies. We deep into
the analysis of two languages: German, a language
trained with original data and French, a language
trained via machine translation augmentation.

• German: Errors often arise from compound
nouns, flexible word order, and embedded
clauses, leading to partial omissions, attribute

reordering, or unnatural compounds. When
alignment is uncertain, the model may insert
generic stock phrases or repetitions.

• French: Our analysis shows more frequent
noun substitutions, agreement mismatches,
and text modality shifts (e.g., hedging with

“sont possibles”). Register differences from
determiners or prepositions are also common.
Incorrect date and numeric substitutions oc-
cur more frequently than in German, likely
due to segmentation differences in temporal
expressions.

• Semantic analysis. Surface-form scores vs.
meaning preservation. We observe a system-
atic mismatch between surface-form metrics (e.g.,
BLEU) and semantic adequacy (BLEURT) across
both German and French. Outputs with only mod-
erate n-gram overlap can still be semantically faith-
ful, while some high-scoring predictions contain
factual errors.

Semantically near correct and correct para-
phrases (German). As illustrated by the green-
highlighted examples in Table 5, incorrect lexi-
cal or numeric substitutions leave most of the re-
maining meaning intact (e.g., date shifts: “Son-
ntag, den neunzehnten Dezember” → “Sonntag,
den siebzehnten August”; temperature adjustments:

“sechs Grad an den Alpen” → “neun Grad am
Alpenrand”). We also observe benign stylistic re-
formulations (“es gelten entsprechende Warnun-
gen” → “es bestehen Unwetterwarnungen”) and
word-order changes without semantic effect (“aus
Südwest bis West” → “aus West bis Südost”).

Semantically near correct and correct para-
phrases (French). Similarly, the first green-
highlighted examples show structural or modality
shifts that preserve much of the remaining meaning,
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German (DGS weather domain)

Ref (DE): Sonntag, den neunzehnten Dezember.
EN: Sunday, the nineteenth of December.
Pred (DE): Sonntag, den siebzehnten August.
EN: Sunday, the seventeenth of August.

Ref (DE): sechs Grad an den Alpen.
EN: Six degrees in the Alps.
Pred (DE): neun Grad am Alpenrand.
EN: Nine degrees on the edge of the Alps.

Ref (DE): Höhenlagen Süddeutschlands.
EN: High-altitude areas of southern Germany.
Pred (DE): Küsten.
EN: Coasts.

French (weather domain)

Ref (FR): vingt-huit août.
EN: Twenty-eighth of August.
Pred (FR): vingt-cinq novembre.
EN: Twenty-fifth of November.

Ref (FR): Des rafales orageuses de l’ouest.
EN: Stormy gusts from the west.
Pred (FR): Des rafales orageuses sont possibles.
EN: Stormy gusts are possible.

Ref (FR): Risque d’inondation.
EN: Risk of flooding.
Pred (FR): Avertissements météorologiques violents.
EN: Severe weather warnings.

Table 5: German and French examples —two semanti-
cally near correct paraphrases (green) and one semanti-
cally incorrect output (red), with English translations.

such as date substitutions (“vingt-huit août” →
“vingt-cinq novembre”), modality changes (“Des
rafales orageuses de l’ouest” → “Des rafales
orageuses sont possibles”), or expanded phrasing
(“Également orages sur la mer du Nord” → “Il y
a également des orages sur la mer du Nord”).

Semantically incorrect outputs, true errors
(French and German). The red-highlighted
rows in Table 5 illustrate errors such as topic
drift (predicting wind instead of temperature), in-
correct locations (“Höhenlagen Süddeutschlands”
→ “Küsten”; “sud-est” → “nord”), system in-
versions (“Hoch” ↔ “Tief”; “haut” ↔ “pro-
fonde”), hallucinated entities, or incorrect hazard
categories (“Risque d’inondation” → “Avertisse-
ments météorologiques violents”).

Overall, as in other machine translation tasks,
n-gram metrics penalize near or even fully legiti-
mate paraphrases and sometimes fail to capture seri-
ous factual errors. Robust SLT evaluation requires
semantic metrics that explicitly reward meaning
preservation while penalizing distortions or hallu-
cinations.

Implications. Evaluation and model develop-
ment for multilingual SLT should be language-
aware. In practice, one should combine semantics-
focused metrics with targeted, language-specific
checks (e.g., temporals and agreement in French;
word order and compounding in German) to obtain
fair comparisons and actionable diagnostics.

6 Conclusion

We presented a scalable SLT framework that breaks
the traditional close dependency between sign and
spoken languages in training data and system de-
velopment. By aligning sign language videos with
multilingual, multimodal sentence embeddings
from SONAR, our approach yields a language-
agnostic semantic representation that generalizes
across both sign languages and spoken targets. This
reduces reliance on language-model priors and pri-
oritizes visual grounding and SLT-specific gram-
mar over surface-level text patterns.

Experiments show that language-agnostic su-
pervision enables robust translation even under
sign–target mismatches. Multilingual text aug-
mentations, combined with visual augmentation,
improves performance on PHOENIX-2014T de-
spite limited data. Ablations further confirm the
advantages of this approach in preserving semantic
adequacy.

Current evaluation practices often emphasize sur-
face overlap rather than meaning. Future work
should develop metrics aligned with semantic simi-
larity and extend supervision to low-resource sign
languages and continuous signing in the wild.

Limitations

Our main limitation lies in the visual feature
extractor rather than the model architecture it-
self. We used a pre-existing visual block to avoid
evaluation bias, which restricted us to datasets
with compatible video settings (CSL-Daily and
PHOENIX-2014T) and excluded larger corpora
such as How2Sign or YouTube-ASL. As a re-
sult, our approach focuses on preserving semantics
rather than maximizing exact sentence matches.

Machine translation for data augmentation might
induce unintended cultural mistakes that go beyond
literal translation. The evaluation on non-human
translated datasets also limits the strength of the
conclusions for low-resourced languages.
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A Appendix

A.1 Detailed Architecture
Figure 3 shows the details of our system architec-
ture as explained in Section 3.
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Figure 3: Detailed architecture without the contrastive
term (NCE loss).
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A.2 Porting SONAR from NLLB Fairseq to
Huggingface.

SONAR is officially supported in fairseq, but only
its text encoder is available on Hugging Face.
To enable full conditional generation, we ported
both the encoder and decoder weights from the
original SONAR checkpoints into M200M100, ex-
tending the earlier encoder-only port provided
by the NLLB team. In particular, we trans-
ferred the decoder weights directly from fairseq,
validated their functionality, and released the
complete model for public use. The resulting
M200M100ForConditionalGeneration can now
be loaded end-to-end and fine-tuned directly.

A.3 Additional Qualitative Results
Additional translation examples for CSL-Daily and
PHOENIX-2014T are provided in Tables 6 and 7,
respectively.

Text
Ref (ZH):我们下午三点见面。
EN: We will meet at three in the afternoon.
Pred (ZH):我们三点钟下午见。
EN: We meet at three o’clock in the afternoon.

Ref (ZH):我早上吃面包和牛奶。
EN: I eat bread and milk in the morning.
Pred (ZH):我早上吃了牛奶和面包。
EN: I had milk and bread in the morning.

Ref (ZH):我们乘坐飞机去旅游，今天在酒店住宿。
EN: We took a plane to travel, and are staying in a hotel
today.
Pred (ZH):我们飞机去上海，今天喝酒睡觉。
EN: We took a plane to Shanghai, today we drink alcohol
and sleep.

Table 6: CSL-Daily examples —good translations
(green) and one bad translation (red), showing reference
and prediction in Chinese, with English translations for
clarity.

Text

Ref (DE): ich wünsche ihnen noch einen schönen abend.
EN: I wish you a pleasant evening.
Pred (DE): und jetzt wünsche ich ihnen noch einen schönen
abend.
EN: And now, I wish you a pleasant evening.
Pred (FR): Et maintenant, je vous souhaite une bonne soirée.
EN: And now, I wish you a good evening.

Ref (DE): der wind aus süd bis west weht schwach bis mäßig.
EN: The wind from the south to west blows weakly to moderately.
Pred (DE): der wind weht meist schwach aus süd bis west.
EN: The wind generally blows weakly from south to west.
Pred (FR): Le vent souffle généralement faiblement du sud-ouest.
EN: The wind generally blows weakly from the southwest.

Ref (DE): in deutschland gibt es nur schwache luftdruckunter-
schiede.
EN: In Germany, there are only slight air pressure differences.
Pred (DE): im nordosten deutschlands sorgt das hoch für wenig
unbeständiges wetter.
EN: In northeastern Germany, the high pressure system causes
little unsettled weather.
Pred (FR): Dans certaines régions de l’Allemagne, la pression
atmosphérique élevée n’est toujours pas atteinte.
EN: In some regions of Germany, high atmospheric pressure has
still not been reached.

Table 7: PHOENIX-2014T examples —two good trans-
lations (green) and one bad translation (red), showing
reference (German), predictions (German and French),
and English translations.
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