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Abstract

We investigate the tradeoff between adequacy
and fluency in machine translation. We show
the severity of this tradeoff at the evaluation
level and analyze where popular metrics fall
within it. Essentially, current metrics generally
lean toward adequacy, meaning that their scores
correlate more strongly with the adequacy of
translations than with fluency. More impor-
tantly, we find that this tradeoff also persists
at the meta-evaluation level, and that the stan-
dard WMT meta-evaluation favors adequacy-
oriented metrics over fluency-oriented ones.
We show that this bias is partially attributed to
the composition of the systems included in the
meta-evaluation datasets. To control this bias,
we propose a method that synthesizes transla-
tion systems in meta-evaluation. Our findings
highlight the importance of understanding this
tradeoff in meta-evaluation and its impact on
metric rankings.

1 Introduction

As translation systems become more sophisticated
and widely adopted, the critical challenge of accu-
rately evaluating their performance has come to the
forefront, driving significant ongoing research to
the developement of more accurate and robust met-
rics (Chatzikoumi, 2020; Guerreiro et al., 2024).
Traditionally, translation evaluation relied on lex-
ical metrics such as BLEU (Papineni et al., 2002)
and ChrF (Popović, 2015), which primarily con-
sider the n-gram overlap between the candidate
and reference translations. However, these met-
rics have been shown insufficient for measuring the
quality of modern translation systems (Babych and
Hartley, 2008; Freitag et al., 2022). In the recent
decade, researchers have been exploring the idea of
training neural models to measure translation qual-
ity (Wieting et al., 2019; Ma et al., 2019; Freitag
et al., 2022; Guerreiro et al., 2024), with popular

⋆Work partially done when the first author was interning
at Google.

examples including MetricX (Juraska et al., 2023,
2024) and Comet (Rei et al., 2020, 2022a).

Two key aspects of translation quality, long dis-
cussed in the community (Pierce and Carroll, 1966;
White and O’Connell, 1993; Banchs et al., 2015;
Martindale and Carpuat, 2018), are1:

• Fluency: the grammatical correctness and nat-
uralness of the translation; and

• Adequacy: how well the translation conveys
the meaning of the source text.

Flamich et al. (2025) demonstrate that an adequacy–
fluency tradeoff exists in translation: optimizing for
one aspect eventually sacrifices the other. They fur-
ther introduce measurements to study the severity
of this tradeoff at the level of translation systems.

The aforementioned tradeoff naturally results in
an adequacy–fluency tradeoff at the level of evalu-
ation metrics, if we limit our evaluation to a single
score: increasing the capability of measuring one
aspect eventually comes at the cost of decreasing
the capability of measuring the other. It is im-
portant to understand this tradeoff and know the
position of each metric to avoid undesired biases
when optimizing translation systems according to
the metric.

In this work, we demonstrate the severity of
the adequacy–fluency tradeoff at the evaluation
level. We analyze current evaluation setups in
WMT (Callison-Burch et al., 2007; Moghe et al.,
2025), and show that there is a significant disagree-
ment between adequacy and fluency when ranking
systems (Table 1). This directly imposes a severe
tradeoff, as a metric can only agree with either
adequacy or fluency when comparing discordant
system pairs. Subsequently, we empirically ana-
lyze several contemporary translation metrics to
illustrate their positions within this tradeoff.

More importantly, we show that this adequacy–

1Different namings and slightly different definitions are
used in the literature for these two aspects; however, the main
idea remains consistent.
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Evaluation Set Concordance Discordance

En–De’23 49 (74%) 17 (26%)
Zh–En’23 70 (67%) 35 (33%)
En–De’24 98 (72%) 38 (28%)
En–Es’24 55 (71%) 23 (29%)
Ja–Zh’24 58 (74%) 20 (26%)

Table 1: Concordance and discordance between ade-
quacy and fluency in MQM datasets (§3.1), reported
as system pair counts and percentages. Concordance
means one system in a pair outperforms the other in
both metrics; discordance indicates inconsistent perfor-
mance across metrics. Notice that 26–33% discordance,
although being the minority, is way far from being negli-
gible and imposes a significant tradeoff when the metric
quality improves.

fluency tradeoff extends even to the level of meta-
evaluation (the evaluation of evaluation metrics).
Meta-evaluation typically compares the scores of a
set of candidates given by a metric to those given
by humans (Callison-Burch et al., 2007). We show
that the selection of the candidates used during the
meta-evaluation significantly influences the iden-
tified optimal metric within the tradeoff: if there
is a higher variance in the candidates’ adequacy
than in their fluency, the meta-evaluation will lean
toward favoring metrics that prioritize adequacy.
Conversely, if the fluency of these candidates shows
higher variance, the meta-evaluation will prefer
fluency-oriented metrics. This can inadvertently
guide the development of evaluation metrics, and
thus the development of translation systems, toward
a particular bias toward either adequacy or fluency.
We propose to synthesize candidates with desired
variance in their adequacy and fluency scores to
conduct a controlled (balanced) meta-evaluation.

2 Background & Related Work

2.1 Translation Metrics
The evaluation of translation systems is a critical
aspect of their development and deployment, and
has been researched for years (Tao et al., 2018;
Chatzikoumi, 2020). This research has resulted in
the development of a variety of metrics (Chauhan
and Daniel, 2023; Guerreiro et al., 2024).

Traditional metrics, such as BLEU (Papineni
et al., 2002), METEOR (Lavie and Denkowski,
2009), and ChrF (Popović, 2015), compare the out-
put of a translation system against one or more
human-created reference translations, only at the
surface level (e.g., based on string overlap). While

widely adopted for their simplicity, these surface-
level metrics are shown to be incapable of measur-
ing the quality of modern, high-quality translation
systems (Freitag et al., 2022).

Recent advancements have led to the develop-
ment of trained metrics, which leverage machine
learning models to assess translation quality (Wiet-
ing et al., 2019; Freitag et al., 2022). These metrics,
such as MetricX (Juraska et al., 2023, 2024) and
Comet (Rei et al., 2020, 2022a), are often trained
on large datasets of human annotations, allowing
them to learn more nuanced correlations between
system outputs and perceived quality.

Translation metrics can be divided into two
categories: reference-based and reference-free.
Reference-based metrics, such as those mentioned
previously, rely on access to a trusted reference
translation and compare the candidate against the
reference to assess quality. Reference-free metrics,
also known as Quality Estimation (QE) metrics, di-
rectly evaluate the candidate given the source text,
without requiring a reference translation (Ito et al.,
2025). This capability is particularly valuable in
scenarios where human references are scarce or
impractical to obtain, offering a more flexible and
potentially more accurate evaluation paradigm for
contemporary translation systems (Agrawal et al.,
2021). MetricX and Comet offer their reference-
free versions: MetricX QE (Juraska et al., 2023,
2024) and CometKiwi (Rei et al., 2022b).

In our work, we empirically analyze several con-
temporary translation metrics to illustrate their po-
sitions within the adequacy–fluency tradeoff, pro-
viding insights into their strengths and limitations.

2.2 Meta-Evaluation

Meta-evaluation assesses how well a translation
evaluation metric correlates with human annota-
tions (Callison-Burch et al., 2007; Macháček and
Bojar, 2013). This is traditionally accomplished
by computing Pearson, Kendall, and Spearman cor-
relation coefficients (Macháček and Bojar, 2013;
Mathur et al., 2020; Freitag et al., 2023), at ei-
ther the segment2 level (for individual transla-
tion scores) or the system level (for scores aver-
aged per system). More recently, pairwise accu-
racy (PA; Kocmi et al., 2021) and soft pairwise ac-
curacy (SPA; Thompson et al., 2024) have gained
prominence as they directly assess how well a met-

2Following the common terminology in the community,
we refer to each data sample as a segment.
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ric aligns with human preferences over pairs of
translations (Mathur et al., 2020). Given their pop-
ularity, we utilize these two metrics for our analysis
and elaborate their formulations below.

Pairwise accuracy. PA assesses whether a metric
correctly identifies the better translation (segment
level) or the better system (system level) given a
pair. Let m and h be the metric and human scores,
respectively. PA is formulated as

1

|P|
∑
i,j∈P

1[sgn(mj −mi) = sgn(hj − hi)] (1)

where P is the set of pairs, and sgn is the sign
function. Pairs with tied human scores are ex-
cluded (Kocmi et al., 2021).

A key challenge for PA at the segment level is
to handle tied metric scores. While techniques
like tie calibration are employed to address this
issue (Deutsch et al., 2023), recent studies (Per-
rella et al., 2024) indicate that such approaches
are not reliable and the matter warrants further in-
vestigation. This challenge is minor at the system
level, since averaging scores over many translations
rarely yields ties. We therefore focus on system-
level PA in our work.

Soft pairwise accuracy. SPA is a system-level
meta-metric that extends PA by incorporating sta-
tistical significance from both human and metric
scores. Unlike PA’s binary agreement, SPA com-
pares p-values from hypothesis tests to determine if
one system is statistically superior. The SPA score
is formulated as

1

|P|
∑
i,j∈P

(1− |p(hj > hi)− p(mj > mi)|) (2)

Here, p(xj > xi) is the p-value from a permutation
test (Welch, 1990) assessing if system j is superior
to system i based on scores x. SPA is sensitive
to the magnitude of the score differences, reflect-
ing the metric’s confidence in its preference, and
compares this confidence against that of human
judgments.

3 Experimental Setup

3.1 Dataset
The Multidimensional Quality Metrics (MQM)
framework provides a standardized and granular
guideline for characterizing and classifying errors
in translations (Mariana et al., 2015). Instead of

being a score-based annotation, the MQM frame-
work annotates translation errors. Each error is
annotated as a substring of the translation with a
category (such as accuracy, fluency, terminology,
and style) and a severity level (usually major, minor,
and neutral). This framework enables a diagnostic
understanding of translation system performance,
as well as more reliable and standardized evalua-
tion scores.

WMT adopts MQM annotations (Freitag et al.,
2021a) for human evaluation, producing datasets
of detailed translation error annotations. We use
this dataset of years 2023 and 2024 in our meta-
evaluation and analysis. We reserve data from prior
years (2020–2022) for training to avoid leakage.
Our setup is consistent with practice in previous
studies (Juraska et al., 2024; Rei et al., 2022a) for
fair comparison.

It is common to transform MQM annotations
into a single score (Freitag et al., 2022, 2023). This
involves assigning a specific penalty to each error
based on its category and severity (Freitag et al.,
2021b). These penalties are then summed across all
errors in the translation. We refer to this aggregated
value as the All MQM score, where a lower score
indicates higher quality.

For a more granular analysis, Flamich et al.
(2025) categorize MQM errors into adequacy and
fluency classes (Tables 8 and 9 in Appendix A),
resulting in Adequacy MQM and Fluency MQM
scores for each segment. We use these special-
ized scores for our tradeoff analysis. We present
detailed statistics for our dataset in Appendix B.

3.2 Meta-Metrics

To study the performance of evaluation metrics in
the adequacy–fluency tradeoff, we separately as-
sess their ability to measure translation adequacy
and fluency. To achieve this, we compute meta-
metrics—namely, PA and SPA (§2.2)—with re-
spect to Adequacy MQM and Fluency MQM. In
Appendix C, we point out the necessity of includ-
ing both PA and SPA in such studies due to their
potentially different behavior in measuring bias
toward adequacy or fluency.

3.3 Translation Metrics in Our Analysis

In our work, we select a set of diverse and widely
used metrics to analyze their positions within the
adequacy–fluency tradeoff. These metrics include
BLEU (Papineni et al., 2002) and ChrF (Popović,
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2015), representing overlap-based metrics; Met-
ricX (Juraska et al., 2024) and Comet (Rei et al.,
2022a), representing trained metrics; and Met-
ricX QE and CometKiwi (Rei et al., 2023), repre-
senting reference-free metrics.

Moreover, we introduce a set of extreme trans-
lation metrics designed to measure only adequacy
or fluency, which will provide a clearer view of the
tradeoff between the two. Specifically, we develop
AdequacyX and its reference-free variant, Ade-
quacyX QE, trained exclusively on MQM errors
categorized under adequacy. Likewise, we develop
FluencyX trained on fluency annotations.

Technically, these trainable metrics adopt the
same neural architecture as MetricX (Juraska et al.,
2024), and are fine-tuned from an mT5 check-
point (Xue et al., 2021). Following Juraska et al.
(2024), we train these models on MQM annota-
tions (WMT 2022), covering En–De, En–Ru, and
En–Zh.3 AdequacyX and AdequacyX QE are
trained to predict Adequacy MQM, while Fluen-
cyX is trained to predict Fluency MQM. Unlike
Juraska et al. (2024), we exclusively use MQM
annotations for fine-tuning, omitting direct assess-
ments (DA) and synthetic data, as these do not offer
a clear adequacy–fluency distinction.

It should be noted that AdequacyX QE does not
take the reference translation as input as it is a
reference-free metric. We further restrict Fluen-
cyX to the candidate translation alone (no source
or reference), similar to SENTINELCAND in Per-
rella et al. (2024), given that fluency is considered
source-independent.

To have a fair comparison, we also train our own
MetricX and MetricX QE variants; they are iden-
tical to AdequacyX (QE), except that they predict
All MQM scores. The key difference between our
variants and the original MetricX (QE) is the exclu-
sion of DA and synthetic data.

Additionally, we include the log-perplexities
of a pretrained Gemma model as a fluency mea-
sure, following Flamich et al. (2025). We use
Gemma 3 4B (Gemma Team, 2025) in this work.

4 Analysis: Tradeoff at the
Meta-Evaluation Level

In this section, we explore the adequacy–fluency
tradeoff at the meta-evaluation level. We first
discuss in §4.1 how the tradeoff exists in meta-

3We limit En–Zh to the conversation, e-commerce, and
social domains, in line with Juraska et al. (2024).

evaluation, and show that the imbalance in WMT
meta-evaluation datasets imposes a bias that favors
adequacy-oriented metrics. We argue that this bias
consists of both an intrinsic and an extrinsic compo-
nent, and that we aim to control the latter. In §4.2,
we design a metric to quantify the extrinsic bias,
and in §4.3, we propose a practical approach to re-
duce it. Finally we demonstrate in §4.4 the impact
of meta-evaluation bias on the ranking of transla-
tion metrics by comparing this ranking before and
after reducing the meta-evaluation extrinsic bias.

4.1 Understanding the Meta-Evaluation Bias
Translation meta-evaluation compares the ranking
of translation systems produced by a given met-
ric against the ranking based on human annota-
tions, which in our case is the All MQM score.
In this section, we will show that the All MQM
ranking reflects systems’ adequacy more than their
fluency, leading the WMT meta-evaluation to favor
adequacy-oriented metrics.

For simplicity, we assume that All MQM =
Adequacy MQM+Fluency MQM.4 Therefore, the
ranking by All MQM (thus the meta-evaluation
assessment) is more influenced by the compo-
nent with higher variance, and we say the meta-
evaluation is biased toward that component.

As shown in Table 2, Adequacy MQM exhibits
a much higher variance than Fluency MQM in sys-
tem level scores, consequently having a greater
influence on the All MQM system ranking and
the meta-evaluation system-level assessment. This
influence is further demonstrated by the stronger
alignment between All MQM and Adequacy MQM
in terms of both PA and SPA. The question now is:
Should we embrace this dominance of adequacy,
or is it a bias we should mitigate?

Answering the above question requires noticing
that the higher variance of the system-level Ade-
quacy MQM scores, and consequently its greater
influence, can be attributed to two possible causes:

• Intrinsic variation, which is due to the prefer-
ence of the MQM framework and annotators.
For example, adequacy errors may be gener-
ally considered more severe, leading to larger
assigned penalties and thus greater variance.

• Extrinsic variation, which is due to the choice
of translation systems during meta-evaluation.
For example, we may select systems that

4Although there are some errors that are not categorized
as either adequacy or fluency, they are rare and have minor
influence; therefore, we omit them for simplicity.
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Adequacy MQM Fluency MQM
Variance F-stat PA SPA Variance F-stat PA SPA B(∆p)

En–De’23 0.31 36.5 0.98 0.97 0.06 7.0 0.76 0.75 0.08A

Zh–En’23 0.23 80.6 0.97 0.93 0.03 12.9 0.70 0.74 0.03A

En–De’24 0.24 13.7 0.88 0.87 0.11 9.5 0.85 0.81 0.04A

En–Es’24 0.61 26.4 0.96 0.94 0.28 4.6 0.74 0.77 0.13A

Ja–Zh’24 0.40 35.3 1.00 0.98 0.10 4.8 0.74 0.75 0.12A

Macro-Avg 0.36 38.5 0.96 0.94 0.12 7.7 0.76 0.76

Table 2: Adequacy MQM and Fluency MQM statistics across different evaluation sets. The reported statistics
include the variance of system-level scores, the (S)PA of the scores with respect to All MQM, the F-statistic, and
the B transformation of the difference between the p-values of Adequacy MQM and Fluency MQM. The last two
are explained in §4.2.

differ primarily in adequacy, while perform-
ing similarly in fluency. This naturally
leads to higher system-level variance in Ade-
quacy MQM than in Fluency MQM.

Both of the above factors contribute to the vari-
ances of system-level Adequacy MQM and Flu-
ency MQM, which in turn lead to the bias of the
meta-evaluation. Therefore, we say that the meta-
evaluation bias consists of two components: intrin-
sic bias and extrinsic bias.

The intrinsic bias reflects translation experts’ be-
liefs about translation errors. Therefore, we retain
intrinsic bias in this study. However, whether the
extrinsic bias should be eliminated, retained, or
partially kept is debatable and depends on the ap-
plication. In our study, we aim to avoid it in order
to gain a clearer understanding of the adequacy–
fluency tradeoff at the evaluation level. In other
contexts, one could argue that adequacy assessment
should have greater influence on meta-evaluation
outcomes, even at the cost of reduced fluency influ-
ence. In both cases, the extrinsic bias must first be
measured separately from the intrinsic bias.

4.2 Measuring the Extrinsic Bias
To study the extrinsic bias, we propose to compare
the F-statistics (Weir and Cockerham, 1984) for
Adequacy MQM and Fluency MQM. In each case,
the F-statistic is formulated as follows:

F-statistic =
between-system variation
within-system variation

(3)

where the numerator and denominator are

between-system
variation

=
K∑
i=1

N · (s̄i − s̄)2

K − 1
(4)

within-system
variation

=
K∑
i=1

N∑
j=1

N · (si,j − s̄i)
2

N −K
(5)

In our scenario, si,j is the Adequacy MQM or Flu-
ency MQM score of the candidate translation given
by the ith system for the jth segment, s̄i is the aver-
age of all the scores by the ith system, and s̄ is the
average of all the scores. N and K are the numbers
of segments and systems, respectively.

The F-statistic is effective at distinguishing ex-
trinsic variation from intrinsic variation because
of how its numerator and denominator are defined.
On one hand, the intrinsic variation can be regarded
as a multiplicative constant within the s variables;
it appears in both the numerator and denominator
of Eqn. (3) and thus cancels out. On the other hand,
the F-statistic captures extrinsic variation, which is
due to the selected systems in the meta-evaluation.
It does so by normalizing between-system variation
with within-system variation.

Notice that the F-statistic depends on N and K,
which makes it difficult to interpret. To this end, we
adopt the ANOVA framework (Heiman, 2001) and
use p-values to quantify extrinsic variation. We per-
form this analysis separately for Adequacy MQM
and Fluency MQM.

We assume that, within each translation system,
scores are independent and normally distributed
around that system’s mean, and that all systems
share the same variance5; i.e., si,j

iid∼ N (µi, σ
2).

Under the null hypothesis that all systems have
the same mean (µ1 = µ2 = · · · ), the F-statistic
in Eqn. (3) follows an F distribution (Johnson
et al., 1995) with degrees of freedom K − 1 and
N −K. The right-tail p-values are then given by

5ANOVA is robust to moderate variance inequality, so
this assumption need only hold approximately (Lowry,
1998–2023). For completeness, we report in Appendix D
the results using the variance-inequality-tolerant alternative
ANOVA (Welch, 1951), which yield the same conclusions;
We prefer the standard approach for its simplicity and greater
numerical stability.
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Original Synthesized by Adequacy MQM Fluency MQM
Adequacy Fluency F-stat PA SPA F-stat PA SPA B(∆p)

1 ✓ – – 38.5 0.96 0.94 7.7 0.76 0.76 0.120A

2 – ✓ – 213.3 0.94 0.95 2.5 0.53 0.54 0.590A

3 – – ✓ 7.5 0.62 0.71 165.1 0.82 0.78 0.450F

4 ✓ ✓ – 111.9 0.95 0.95 4.9 0.61 0.62 0.130A

5 ✓ – ✓ 21.7 0.80 0.83 75.5 0.73 0.73 0.030F

6 – ✓ ✓ 93.6 0.84 0.87 72.4 0.59 0.60 0.005A

7 ✓ ✓ ✓ 72.7 0.88 0.88 48.8 0.63 0.64 0.005A

Table 3: Adequacy MQM and Fluency MQM statistics for different meta-evaluation setups, along with the
B transformation of the difference between their corresponding p-values, macro-averaged across evaluation sets.
Each meta-evaluation setup includes one or more system sets drawn from the original, synthesized-by-adequacy,
and synthesized-by-fluency system sets.

1− CDF(F-statistic), where CDF denotes the cu-
mulative distribution function of the F-distribution.
Converting F-statistics to p-values puts results on
a common probability scale, and makes the inter-
pretation independent of N and K. We use this
p-value as our measure of extrinsic variation.

As mentioned in §4.1, extrinsic variations of
Adequacy MQM and Fluency MQM contribute to
their respective variances. An asymmetry in these
variations induces a bias of meta-evaluation toward
adequacy or fluency, which we term extrinsic bias.
We quantify this bias by

∆p = p Adequacy MQM − p Fluency MQM (6)

where p Adequacy MQM and p Fluency MQM are the re-
spective p-values. A positive ∆p indicates bias to-
ward adequacy, a negative ∆p indicates bias toward
fluency, and ∆p = 0 indicates no bias between ad-
equacy and fluency.

We observe that the range of ∆p is typically
very small (from 10−7 to 10−31 in Table 2), even
in cases where severe bias is present (as shown in
our later analysis). For presentation purposes, we
report the degree of bias using B(∆p) = 1

1−log |∆p| ,
and append a special symbol to indicate which
aspect dominates: A for adequacy (∆p > 0) and
F for fluency (∆p < 0). Note that B ∈ [0, 1], with
a lower B indicating less bias.

We report the B values in Table 2, where we
compare the influence of Adequacy MQM and Flu-
ency MQM on the meta-evaluation in five evalua-
tion datasets. Results show a consistent extrinsic
bias toward adequacy. We argue that this behavior
stems from the particular composition of transla-
tion systems in the WMT datasets, and may be
controlled by carefully selecting or synthesizing
systems with more variance in their Fluency MQM.

4.3 Reducing the Extrinsic Bias

In this subsection, we provide a method to reduce
meta-evaluation extrinsic bias. This not only has
practical values, but also allows us to better evalu-
ate the adequacy–fluency bias of existing transla-
tion evaluation metrics (to be discussed in §5).

We accomplish this by considering additional
pseudo-translation systems in the meta-evaluation.
In particular, we synthesize two sets of transla-
tion systems: one exhibiting extreme variations
in system-level Adequacy MQM, and the other in
Fluency MQM. This design helps to control the
variation in each dimension and thereby reduces
extrinsic bias through controlled mixing of candi-
date translation systems.

Suppose we have K original translation sys-
tems. We synthesize K adequacy-oriented systems
in the following way: for each segment, we as-
sume that the kth synthesized system generates the
kth most adequate translation (according to Ade-
quacy MQM), among the original K translation
systems’ outputs.6 It is easy to see that, given
the available translation candidates, such K syn-
thesized translate systems exhibit extreme varia-
tion in Adequacy MQM at the system level. Like-
wise, we synthesize K fluency-oriented systems,
and in total, we have 3K translation systems for
meta-evaluation. It is emphasized that our research
does not require additional annotation effort, as the
above synthesizing process utilizes readily avail-
able MQM scores.

Table 3 illustrates how synthesized systems help
control the extrinsic bias. The table reports the
macro-average of metrics across the five evaluation
sets (§3.1).

6For segments with tied scores, we rank them randomly.
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Rows 2 and 3 represent extreme configurations
that maximize the F-statistic for Adequacy MQM
and Fluency MQM, respectively. We see that they
yield extreme B values, with Row 2 being biased
toward adequacy and Row 3 toward fluency. This
expected pattern confirms that (1) the B value effec-
tively captures extrinsic bias arising from system
selection, and (2) our synthesis method can control
such a bias.

We observe that the setup in Row 5 has an over-
all bias toward adequacy (indicated by higher PA
and SPA scores), although the extrinsic bias is to-
ward fluency (indicated by the F annotation). This
suggests the existence of intrinsic bias discussed
in §4.1, further justifying the need of separately
quantifying the intrinsic and extrinsic bias.

We also observe that Rows 6 and 7 yield the
lowest B values, and we consider them the most
balanced meta-evaluation setups, which will be
used in our study of adequacy–fluency tradeoff at
the evaluation level in §5.

4.4 The Effect of Meta-Evaluation Bias on
Metric Comparisons

In the previous parts, we have demonstrated that the
standard WMT meta-evaluation is biased toward
adequacy, and we propose to carefully synthesize
pseudo-translation systems to control this bias. In
this part, we show how the meta-evaluation bias can
influence the development of translation metrics.

Table 4 presents how the original WMT setup
(Row 1 of Table 3) and our balanced setup (Row 6
of Table 3) rank various metrics, using PA and SPA
as the meta-metrics.

It is interesting to examine “CometKiwi 22 XXL”
and “MetricX (ours)” in detail, shown by the bold
lines in Table 4. As seen, CometKiwi 22 XXL
consistently and significantly outperforms Met-
ricX (ours) under the original meta-evaluation,
which is biased toward adequacy; however,
this trend is reversed under our balanced meta-
evaluation setup. In §5, we will show that
CometKiwi 22 XXL has a considerable bias to-
ward adequacy, whereas MetricX (ours) demon-
strates a more balanced behavior. This comparison
shows that a metric is favored if its bias in the
adequacy–fluency spectrum aligns with that of the
meta-evaluation; consequently, the development of
translation metrics inherits the bias of the meta-
evaluation. Our analysis highlights the importance
of studying translation meta-evaluation imbalance.

Metric Original setup Our balanced setup
PA SPA PA SPA

AdequacyX 0.881 4 0.866 4 0.847 1 0.833 1

AdequacyX QE 0.885 3 0.873 1 0.834 2 0.824 5

FluencyX 0.697 13 0.720 12 0.676 12 0.675 13

MetricX (ours) 0.862 7 0.845 8 0.833 3 0.829 3

MetricX QE (ours) 0.878 6 0.861 6 0.809 6 0.823 6

MetricX-24 0.880 5 0.866 3 0.820 5 0.831 2

MetricX-24 QE 0.888 2 0.867 2 0.820 4 0.827 4

Comet 22 0.850 8 0.847 7 0.800 8 0.804 8

CometKiwi 22 0.813 9 0.802 9 0.782 9 0.772 9

CometKiwi 22 XXL 0.889 1 0.862 5 0.805 7 0.815 7

Gemma 3 (4B) 0.701 12 0.754 10 0.652 13 0.736 10

BLEU (sent. level) 0.726 11 0.712 13 0.726 10 0.689 12

ChrF (sent. level) 0.739 10 0.731 11 0.722 11 0.721 11

Table 4: Meta-evaluation of translation metrics using the
original WMT setup and our balanced setup. Decimal
numbers denote the PA and SPA scores, macro-averaged
across our five evaluation sets; blue squares indicate the
corresponding rankings. We bold MetricX (ours) and
CometKiwi 22 XXL, as they are discussed in detail in
the main text. Note that the results here are not identical
to those in the WMT reports as we are reporting the
average results across specific evaluation sets.

Evaluation Set Concordance Discordance

En–De’23 136 (49%) 140 (51%)
Zh–En’23 124 (29%) 311 (71%)
En–De’24 282 (50%) 279 (50%)
En–Es’24 139 (43%) 186 (57%)
Ja–Zh’24 156 (51%) 149 (49%)

Table 5: Concordance and discordance between ade-
quacy and fluency in our balanced setup, reported as
system pair counts and percentages.

5 Analysis: Tradeoff at the Evaluation
Level

In this section, we analyze the adequacy–fluency
tradeoff at the evaluation level and determine the
bias of each metric within this tradeoff. Note that
the notion of bias considered here is related to but
distinct from that in §4. We say a metric is biased
toward adequacy or fluency if it ranks translation
systems in a way that is more aligned with the rank-
ing derived solely from that aspect, as measured by
the corresponding MQM scores.

To study the aforementioned bias, we would like
to separately meta-evaluate the adequacy and flu-
ency of each metric, using the original WMT meta-
evaluation setup and our balanced setup described
in Row 6 of Table 3.7 Notice that the latter is a

7Although Rows 6 and 7 in Table 3 have similar B values,
we prefer the former because it is fully synthesized and has a
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Table 6: PA breakdown for the original setup and our balanced setup, macro-averaged across five evaluation sets.
For each metric, the agreements with Adequacy MQM and Fluency MQM sum to 1, by formulation and because
ties between system-level Adequacy MQM and Fluency MQM scores are rare.

synthetic setup, which may not be representative
of real-world situations. It is included only for our
adequacy–fluency analysis.

From the data statistics in Table 5, we observe
an even stronger disagreement between adequacy-
and fluency-based system rankings under the bal-
anced setup than under the original setup (Table 1).
This is expected, as the balanced setup synthesizes
the most- and least-adequate systems, which are
unlikely to correspond to the most- and least-fluent
systems, and vice versa.

Despite the significant discordance between Ad-
equacy MQM and Fluency MQM, we also observe
a large number of concordant cases (i.e., one sys-
tem outperforms another in both Adequacy MQM
and Fluency MQM). This raises a challenge when
we separately analyze adequacy and fluency. To ad-
dress this, we design three experimental protocols,
as follows.

5.1 PA Breakdown

In this part, we design an experimental protocol
using PA to separately analyze how a metric as-
sesses adequacy and fluency, without being misled
by the concordant cases. Since PA counts binary
agreements, we may simply exclude concordant
cases from our adequacy/fluency analysis.

Specifically, we first split our system pairs into
two disjoint subsets based on whether their Ade-
quacy MQM and Fluency MQM are concordant or

clearer construction. For completeness, we also report results
for the setup in Row 7 in Appendix E.

discordant. Then, for each metric we report:
• PA in concordant cases, measuring the met-

ric’s general performance;
• PA with respect to Adequacy MQM in discor-

dant cases, which measures the metric’s bias
toward adequacy (thus we call it “agreement
with Adequacy MQM”); and

• PA with respect to Fluency MQM in discor-
dant cases, which is called “agreement with
Fluency MQM.”

In Table 6, we present the results macro-
averaged8 across different evaluation sets.9

As seen, both BLEU and ChrF achieve
more agreement with Adequacy MQM than Flu-
ency MQM. This provides empirical evidence for
the belief in the literature that BLEU and ChrF
lean toward adequacy (Flamich et al., 2025). On
the other hand, FluencyX and Gemma 3 exhibit
a stronger bias toward fluency, which aligns with
their design. Moreover, All MQM shows a strong
alignment with Adequacy MQM in the original
setup and a weaker alignment in our balanced setup,
confirming our claims in §4 that current WMT
meta-evaluation is biased toward adequacy and that
such bias is partially mitigated in our balance meta-
evaluation setup.

8In our preliminary experiments, we also analyzed the
micro-averaged results, which led to the same conclusions as
those obtained here.

9We report results for individual evaluation sets under the
original setup in Appendix F, where we observe diverse be-
haviors by the metrics. This variation may be due to the noise
of metric performance, which tends to be smoothed out when
averaged across evaluation sets.
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Original setup Our balanced setup

Figure 1: SPA plane using (a) the original setup and (b) our balanced setup. Legends are shared between the two
figures. Each shadow line represents the combination of Adequacy MQM or Fluency MQM with a specific random
noise instance. The solid red and blue lines are the average of the shadow lines.

Interestingly, FluencyX and Gemma 3 show
some alignment with adequacy, despite lacking ac-
cess to the source texts. This can be explained by
two possibilities: (1) These metrics are imperfect
and fail to align entirely with Fluency MQM, al-
though designed to do so. (2) When the metrics
are trained, they have learned strong prior for ad-
equacy errors (e.g., due to the adequacy–fluency
correlation of training segments). This aligns with
the findings of Perrella et al. (2024), who show that
metrics based solely on candidate translations or
source texts can achieve high performance.

For most other metrics, we find that they exhibit
stronger alignment with Adequacy MQM than with
Fluency MQM. Among them, the MetricX variants
display a relatively more balanced behavior than
other metrics, including the Comet variants.

Finally, we would like to point out that our anal-
ysis sheds light on the position of different evalua-
tion metrics within the adequacy–fluency tradeoff.
However, whether a metric should achieve 50%–
50% balance or mimicking All MQM (which is
highly biased toward adequacy but often treated
as the evaluation ground truth) is a task-specific
design choice.

5.2 SPA Plane

We also aim to conduct an adequacy–fluency anal-
ysis using SPA. However, we cannot mirror the PA
breakdown in §5.1, because SPA lacks a binary
notion of concordance versus discordance. Instead,

we perform qualitative visualization to demonstrate
the adequacy–fluency tradeoff of a metric.

Specifically, we design a plot where the x-axis
and y-axis represent SPA computed with respect to
Fluency MQM and Adequacy MQM, respectively.
Each metric is shown as a single point in this space.
We then augment the plot with three sentinel lines:

• Tradeoff line (the black lines in Figure 1),
representing the linear interpolation of Ad-
equacy MQM and Fluency MQM. No system
can surpass the tradeoff line.

• Adequacy-knowledge line (the blue lines in
Figure 1), derived from linear interpolation of
Adequacy MQM and random scores (i.e., uni-
form in the range of Adequacy MQM scores
for each segment). The interpolation is ac-
complished by weighted average of the scores.
Points on this line achieve fluency scores
solely due to the correlation between Ade-
quacy MQM and Fluency MQM.

• Fluency-knowledge line (the red lines in Fig-
ure 1), derived from linear interpolation of
Fluency MQM and the random score.

The latter two lines are averaged from 10 computa-
tions with different random score instances.

These three lines form a triangle-like shape with
vertices at Adequacy MQM, Fluency MQM, and
pure random noise. A metric’s closeness to the
tradeoff line indicates its general quality, while its
closeness to the other two lines reveals its bias
toward adequacy or fluency.
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Unnormalized sensitivity Normalized sensitivity
Metric Adequacy Fluency Adequacy Fluency

All MQM 0.995 0.998 0.882 0.353
Adequacy MQM 1.000 0.000 1.000 0.000
Fluency MQM 0.000 1.000 0.000 1.000
AdequacyX 0.211 0.146 0.667 0.184
AdequacyX QE 0.143 0.084 0.474 0.111
FluencyX 0.010 0.018 0.202 0.145
MetricX (ours) 0.125 0.100 0.644 0.206
MetricX QE (ours) 0.081 0.070 0.521 0.180
MetricX-24 0.379 0.257 0.591 0.160
MetricX-24 QE 0.300 0.207 0.503 0.139
Comet 22 0.010 0.006 0.593 0.142
CometKiwi 22 0.007 0.003 0.415 0.071
CometKiwi 22 XXL 0.017 0.010 0.489 0.122
Gemma 3 (4B) 0.037 0.101 0.212 0.231
BLEU (sent. level) 1.201 0.755 0.383 0.099
ChrF (sent. level) 1.088 0.657 0.149 0.090

Table 7: Normalized and unnormalized sensitivity
against adequacy and fluency.

Figure 1 presents the results, also macro-
averaged across the evaluation sets in §5.1. The
black line illustrates the severity of the adequacy–
fluency tradeoff in translation evaluation (given a
certain meta-evaluation setup): a larger top-right
area indicates a more severe tradeoff, as this area
is not reachable. As shown, our balanced setup
exhibits a more severe tradeoff, which is consistent
with Table 5. Moreover, our balanced setup has a
larger angle between the blue and red lines, indicat-
ing a lower correlation between the two aspects.

Regarding specific metrics, we observe that Flu-
encyX and Gemma 3 lie close to the fluency bound-
ary (red line), while other metrics (namely, BLEU,
ChrF, Comet, and MetricX) are biased toward ad-
equacy. In particular, Comet variants are more
biased than MetricX variants. The SPA results are
consistent with the analysis using PA (§5.1).

5.3 Sensitivity Analysis

In §5.1 and §5.2, we illustrate the position of each
metric in the adequacy–fluency tradeoff by their
system-level ranking prediction. Here, we aim to
analyze how each metric reacts to an adequacy or
fluency error.

We do this by controlling one aspect while vary-
ing the other. Take adeqacy as an example. Given
a source segment, we consider pairs of translation
candidates that share the same Fluency MQM but
differ in Adequacy MQM. For a metric, we re-
port ∆ metric score

∆ Adequacy MQM , averaged over all our transla-
tion pairs. This measures the expected change in
the metric score per one-point difference in Ade-
quacy MQM.

We also report a normalized version of the above
measure by multiplying it with

∑
σ(Adequacy MQM)∑
σ(metric score) ,

where σ(·) is the standard deviation over differ-
ent candidate translations given a segment, and the
sum is taken over all segments. This scaling en-
ables meaningful comparison across metrics with
different output scales.

Table 7 reports the results for both adequacy and
fluency. Here, we can interpret the bias of a met-
ric by comparing the sensitivity to adequacy and
that to fluency. Generally, our findings in previous
subsections are also observed in this experiment,
except for the normalized sensitivity of FluencyX,
which requires further investigation.

Overall, this section provides three analysis pro-
tocols (PA Breakdown, SPA Plain, and Sensitivity
Analysis) to study the position of different evalua-
tion metrics within the adequacy–fluency tradeoff.
Our key findings in this section include: (1) Most
of the translation metrics are biased toward ade-
quacy, and (2) For the commonly used MetricX
and Comet metrics, the former exhibits a more
balanced behavior than the latter. Consistent ob-
servations in different protocols cross-validate the
reliability of our findings.

6 Conclusion

In this work, we investigate the adequacy–fluency
tradeoff in translation. While this tension is
well-documented at the level of translation out-
put (Flamich et al., 2025), we show that it also
manifests severely at the levels of evaluation and
meta-evaluation.

Through empirical analysis of WMT meta-
evaluation protocols, we uncover a systematic
bias toward adequacy, driven by the composition
of meta-evaluation datasets. We also propose a
method that can control the balance between ade-
quacy and fluency.

We further analyze the placement of popu-
lar translation evaluation metrics along the ade-
quacy–fluency tradeoff and find that most metrics
lean toward adequacy.

We argue that the adequacy–fluency tradeoff is a
critical yet under-recognized matter in translation
evaluation and meta-evaluation. While we do not
take a stance on how to deal with such bias, our
primary contribution is to raise awareness of this
matter within the community.

We discuss future work in Appendix G.
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Limitations

Our work provides an extensive investigation of
adequacy–fluency trade-offs in the evaluation and
meta-evaluation of machine translation. However,
it also has limitations.

First, our work is based on MQM data, which in-
cludes human evaluation that is inherently noisy. It
places limits on the generality of the conclusion we
draw in this paper. To mitigate this, we report re-
sults macro-averaged over five translation datasets.
The results on individual dataset are considerably
noisier, as shown in Appendix F.

Second, this study covers only a limited set of
language pairs and systems, owing to the limited
availability of MQM data. Expanding the evalua-
tion data would yield more robust conclusion.

Third, we only analyze extrinsic bias (caused
by the composition of translation systems in meta-
evaluation), while not addressing the intrinsic bias
(caused by the design of the MQM framework).
Studying the intrinsic bias is highly impactful and
warrants further efforts.
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A Adequacy MQM and Fluency MQM
Categorization

As mentioned in §3.1, we consider Ade-
quacy MQM and Fluency MQM separately, follow-
ing the categorizations provided in Flamich et al.
(2025). Table 8 shows the categorization used for
En–De, Ja–Zh, and Zh–En. Specially, En–Es fol-
lows the categorization in Table 9.

B Dataset Statistics

Table 10 summarizes key statistics for each evalua-
tion dataset in our study.

C PA vs. SPA

In the main paper, we mention that PA and SPA
could behave differently, and that it is necessary
to consider both PA and SPA in our study. In this
appendix, we use a toy example to illustrate the po-
tential disagreement of PA and SPA when assessing
whether a metric is biased toward Adequacy MQM
or Fluency MQM.

Table 11 shows the details of our example. In
this case, PA suggests that the metric is biased
toward adequacy, because PA only judges based on
the sign. However, SPA suggests the opposite, as it
concerns the closeness of the score difference. See
§2.2 for details.

Therefore, we use both of the metrics, and de-
sign dedicated experiments for them. Luckily, our
findings are generally consistent under PA and SPA,
suggesting that they are reliable meta-metrics in
our study.

D Measuring Extrinsic Bias without
Equal-Variance Assumption

In §4.2, for simplicity we assume that all transla-
tion systems share the same variance in their Ade-
quacy MQM scores and the same variance in their
Fluency MQM scores. In this part, we drop this
assumption and use Welch (1951)’s ANOVA ap-
proach (which does not require the equal-variance
assumption) to calculate F-statistics and B values.

Table 12 reports our results. The findings are
consistent with those reported in Table 2 under
the equal-variance assumption. We nevertheless
prefer the standard approach presented in the main
text due to its greater simplicity and numerical
stability. Note that we observe undefined p-values
in our preliminary experiments for some synthetic
datasets in §4.3, if we do not have the assumption.

E Analysis Results for Setup 7

In this section, we present the results of PA Break-
down (§5.1) and SPA Plane (§5.2) based on Setup 7
in Table 3. We include this setup for the sake of
completeness, as it closely matches Row 6 (used
in our main analysis) in terms of B values. Ta-
ble 13, Table 14, and Figure 2 present the concor-
dance/discordance ratio, PA Breakdown, and SPA
Plane results, respectively, for Setup 7. All our
findings based on Setup 6 also hold in this setup.

F Adequacy–Fluency Tradeoff Results on
Individual Evaluation Sets

In §5, we report results macro-averaged across five
evaluation sets (of different language pairs). In this
part, we present the results on each evaluation set.

In Table 15 and Figure 3, we report PA-
Breakdown and SPA Planes results based on the
original WMT setup, presented separately for each
evaluation set. The results exhibit diverse behaviors
across evaluation sets. Thus, we perform macro-
average in our main paper. The noisy phenomenon
requires further investigation.

G Future Work

Our study opens several avenues for future research,
discussed below.
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Accuracy errors Fluency errors Other

Accuracy/Addition Fluency/Grammar Style/Archaic or obscure word choice Other
Accuracy/Creative Reinterpretation Fluency/Inconsistency Style/Bad sentence structure Source issue
Accuracy/Gender Mismatch Fluency/Punctuation Style/Unnatural or awkward
Accuracy/Mistranslation Fluency/Register Locale convention/Address format
Accuracy/Omission Fluency/Spelling Locale convention/Currency format
Accuracy/Source language fragment Fluency/Text-Breaking Locale convention/Time format
Non-translation! Terminology/Inconsistent Terminology/Inappropriate for context

Table 8: Flamich et al. (2025)’s categorization of MQM errors, used for En–De, Ja–Zh, and Zh–En translation
directions.

Accuracy errors Fluency errors Other

Addition Capitalization Date-time format Other
Agreement Inconsistency Lacks creativity Source issue
Do not translate Grammar Measurement format
Mistranslation Number format Punctuation
MT hallucination Register Spelling
Omission Unnatural flow Whitespace
Untranslated Word order Wrong language variety
Wrong named entity
Wrong term

Table 9: Flamich et al. (2025)’s categorization of MQM errors, used for the En–Es translation direction.

Year 2023 2023 2024 2024 2024
Language pair En–De Zh–En En–De En–Es Ja–Zh

Mean All MQM 6.17 2.51 2.50 0.58 2.92
Mean Adequacy MQM 3.97 1.62 1.38 0.45 2.55
Mean Fluency MQM 1.99 0.89 1.10 0.13 0.35
Mean non-zero All MQM 10.02 5.20 4.95 3.00 6.00
Mean non-zero Adequacy MQM 9.39 6.21 5.63 3.91 6.38
Mean non-zero Fluency MQM 4.23 2.36 2.82 1.37 2.07

# segments 5520 1954 8766 8722 7840
# segments w/o errors (All MQM = 0) 1350 350 3901 6672 3842
# segments w/ errors (All MQM > 0) 4170 1604 4865 2050 3998
# segments w/ adequacy errors (Adequacy MQM > 0) 2919 891 2738 1393 3354
# segments w/ fluency errors (Fluency MQM > 0) 3149 1250 3462 849 1325

Table 10: Dataset statistics by language pair.

First, we reveal the potential imbalance in the
translation meta-evaluation and highlight the impor-
tance of understanding this phenomenon (§4). We
propose a statistical measure to quantify this imbal-
ance and design a method to control it through data
synthesis. However, there is room for improvement
in both measuring the imbalance and debiasing the
meta-evaluation. In particular, we are interested in
exploring theoretical approaches to debiasing the
meta-evaluation outputs by normalizing scores in a
post hoc manner, without altering the datasets.

Second, we develop dedicated translation met-
rics, AdequacyX and FluencyX, to independently
assess adequacy and fluency (§3.3). We aim to
further improve this separation, as it facilitates

adequacy–fluency analyses, especially in scenar-
ios where MQM annotations are not available.

Third, as we are now in the era of large lan-
guage models (LLMs), it is interesting to study the
LLM-as-a-judge for translation through the lens of
the adequacy–fluency tradeoff, for example, under-
standing and steering the bias of LLM-as-a-judge.
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Sys 1 Sys 2 ∆

Adequacy MQM 8.0 6.0 +2.0
Fluency MQM 6.0 6.5 −0.5

Metric 6.3 6.0 +0.3 cl
os

er

sa
m

e
si

gn

Table 11: A toy example illustrating potential disagree-
ment between PA and SPA: PA prefers keeping the
same sign, whereas SPA prefers the closer one. Here,
all numbers are hypothetical for illustration purposes.

F-statistic B(∆p)
Adequacy Fluency

En–De’23 28.9 8.4 0.07A

Zh–En’23 84.1 11.9 0.04A

En–De’24 13.0 9.0 0.04A

En–Es’24 26.5 4.2 0.14A

Ja–Zh’24 28.8 6.9 0.08A

Macro-Avg 36.3 8.1

Table 12: Welch (1951)’s F-statistics for Ade-
quacy MQM and Fluency MQM, and the respective
B-values, in the original meta-evaluation setup.

Evaluation Set Concordance Discordance

En–De’23 356 (57%) 274 (43%)
Zh–En’23 370 (37%) 620 (63%)
En–De’24 692 (54%) 583 (46%)
En–Es’24 375 (51%) 366 (49%)
Ja–Zh’24 399 (54%) 342 (46%)

Table 13: Concordance and discor-
dance between Adequacy MQM and Flu-
ency MQM in Setup 7, reported as system
pair counts and percentages.

Table 14: PA breakdown, macro-averaged across five evaluation sets,
for Setup 7.

Figure 2: SPA plane using Setup 7, macro-averaged across five evaluation sets. Each shadow line represents the
combination of Adequacy MQM or Fluency MQM with a specific random noise instance. The solid red and blue
lines are the average of the shadow lines.
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Table 15: PA breakdown, per evaluation set, based on the original WMT setup.
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Figure 3: SPA plane based on the original WMT setup for (a) En–De 2023, (b) Zh–En 2023, (c) En–De 2024, (d)
En–Es 2024, and (e) Ja–Zh 2024. The legend is shared for all the figures.


