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Abstract

To improve the translation quality of “black-
box” machine translation (MT) systems, we
focus on the automatic editing of source texts
to be translated. In addition to the use of a
large language model (LLM) to implement ro-
bust and accurate editing, we investigate the
usefulness of targeted editing, i.e., instructing
the LLM with a text span to be edited. Our
method determines such source text spans us-
ing a span-level quality estimator, which identi-
fies actual translation errors caused by the MT
system of interest, and a word aligner, which
identifies alignments between the tokens in the
source text and translation hypothesis. Our em-
pirical experiments with eight MT systems and
ten test datasets for four translation directions
confirmed the efficacy of our method in improv-
ing translation quality. Through analyses, we
identified several characteristics of our method
and that the segment-level quality estimator is
a vital component of our method.

1 Introduction

In the last decade, the quality of machine transla-
tion (MT) outputs has been significantly improved
as a result of the advancements of neural MT
(NMT) and large language models (LLMs) and
the accumulation of parallel data in the community.
A number of new techniques for further improving
translation quality, i.e., reducing translation errors,
have been presented at conferences; however, pro-
prietary MT services have tended to remain state of
the art, presumably thanks to undisclosed technolo-
gies and massive in-house data. Such “black-box”
systems are, in general, difficult to adapt for users’
niche use cases in which texts with specific content
domains or text styles are to be translated.

To obtain better translations using black-box MT
systems, several strategies have been proposed.

* This work was done during an internship of the first
author at NICT.

One such strategy is “pre-editing,” i.e., editing
given source texts to improve their translation by
an MT system of interest. Although studies on au-
tomatic pre-editing have long been conducted (§2),
two issues remain. First, existing methods have
only limited editing ability. Various types of source
text editing can potentially improve its translata-
bility (Miyata and Fujita, 2017, 2021). However,
in past studies, researchers have addressed only
specific linguistic complexities or performed the re-
generation of entire texts indiscriminately. Another
issue is that researchers have performed pre-editing
without referring to the actual translation generated
by the MT system, despite the proven effective-
ness of editing source text with reference to actual
translation errors (Uchimoto et al., 2006; Resnik
et al., 2010). Different MT systems have different
error tendencies; thus, editing expressions that the
MT system can translate well would result in new
translation errors.

In this study, we automate “targeted source text
editing” using (a) quality estimation models to de-
termine what to edit on the basis of the translation
errors caused by a target MT system and to search
for a better translation and (b) LLMs to realize var-
ious types of editing as in Ki and Carpuat (2025).
In our method (§3), a given source text is translated
by the MT system, and errors in the output are iden-
tified by a span-level quality estimator. Then, using
an LLM, our method edits the source text with a
text span annotated as the source of the severest
translation error. Guiding the editing process with
a trigger error does not guarantee that the MT sys-
tem can translate the edited text better (Miyata and
Fujita, 2017, 2021). Thus, our method searches for
a better translation by repeating text editing and
MT, relying on a segment-level quality estimator.

Our empirical experiments with eight MT sys-
tems and ten test datasets for four translation di-
rections confirmed the efficacy of our method in
improving translation quality (§5). Our analyses
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also revealed several characteristics of our method,
including the diverse impact depending on the MT
system and dataset, the necessity of improving the
segment-level quality estimator, and controlled edit-
ing realized by tailored instruction (§6).

2 Previous Work

MT systems and services have gradually per-
vaded our lives, and have been incorporated into
the human-centered translation production process
adopted by translation/language service providers
(ISO/TC37, 2017). Before they became sufficiently
practical, researchers examined several approaches
to human–MT interaction. Uchimoto et al. (2006)
proposed the editing of source texts motivated by
translation errors; the method was later named “tar-
geted paraphrasing” by Resnik et al. (2010). In-
spired by previous studies on targeted paraphrasing,
Miyata and Fujita (2017, 2021) conducted man-
ual investigations into the pre-editing strategy for
exploiting black-box services based on statistical
and neural MT. Through incrementally perform-
ing source text editing in four content domains
referring to MT outputs, they found that most
(80%–100%) of the source texts could eventually
be edited so that they will lead to no translation er-
rors and that human editors have performed diverse
types of edits, not only limited to paraphrasing, that
can improve translation quality.

Automatic “pre-editing” methods, which have
been studied for three decades, can be classified
into two groups. The first group focuses on specific
linguistic phenomena that are difficult to translate,
such as low frequency words, subject ellipsis, and
long sentences, and avoids them relying on a set of
rewriting rules based on morpho-syntactic informa-
tion, corpus statistics, and neural language models
(Shirai et al., 1993; Kim and Ehara, 1994; Yam-
aguchi et al., 1998; Shirai et al., 1998; Yoshimi,
2001; Mirkin et al., 2013; Štajner and Popovic,
2016; Štajner and Popović, 2018; Koretaka et al.,
2023). However, each of these methods only covers
a specific type of editing, among the diverse promis-
ing ones. Early methods are difficult to replicate
for other source languages because of their heavy
reliance on hand-crafted rules and resources.

Another line of research has attempted to re-
generate entire source texts by regarding the task
as monolingual translation and applying data-
driven sequence-to-sequence decoding methods
(Sun et al., 2010; Nanjo et al., 2012; Mirkin et al.,

2013; Mehta et al., 2020). The performance of
this approach is dominated by the characteristics
and quantity of training parallel data. Since no
parallel data have been specifically tailored for the
purpose of pre-editing, except for small collections
for manual analyses and evaluation, researchers
have used monolingual parallel data that exhibit
other monolingual tasks, such as text simplification
and text revision, or synthetic parallel data gener-
ated by back-translating bilingual parallel data and
round-trip translation of monolingual data. This
approach has been proven effective for rule-based
and statistical MT systems (Sun et al., 2010; Nanjo
et al., 2012; Mirkin et al., 2013); in contrast, it does
not necessarily work for NMT systems (Koretaka
et al., 2023). Recently, Ki and Carpuat (2025) ex-
amined the utility of LLMs for source text editing.
They compared several editing strategies and iden-
tified that the instruction for text simplification and
selection based on quality estimation are effective.

Unlike manual investigations (Miyata and Fujita,
2017, 2021), both of the aforementioned groups
of methods do not refer to the translation errors
caused by the MT system of interest. Although a
linguistically motivated pre-edit should be helpful
in general, excessive editing of translatable expres-
sions would introduce new translation errors.

3 Targeted Source Text Editing

Unlike existing “pre-editing” methods, we propose
the editing of given source texts to avoid actual
translation errors that the target MT system makes,
i.e., the automation of the manual investigation pro-
cess (Miyata and Fujita, 2017, 2021). Algorithm 1
shows the overall procedure of our method.

Given a source text src0, our method first trans-
lates it using an MT system of interest T , and eval-
uates the quality of the generated hypothesis hyp0
with reference to src0 using a quality estimator Q.
The pair of hyp0 and its score initializes the best
result (steps 1–3). The open list of errors to be
edited is also initialized with translation errors in
hyo0 identified by an error detector E (steps 4–5).

Then, for pre-defined iterations N or until no
errors remain (step 7), our method repeats the fol-
lowing steps: (a) identify the severest error and
corresponding source text span (steps 8–9, §3.1),
(b) edit the identified source span (step 10, §3.2),
(c) translate the edited source text and evaluate the
new hypothesis (steps 11–12, §3.3), and (d) search
for the best translation (steps 8, 13–17, §3.4).
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Algorithm 1: Proposed Error-Informed
Source Text Editing Method.

Input :Original source text src0, Translator T ,
Quality estimator Q, Error detector E,
Maximum iteration N , Aligner A,
Paraphraser P

Output :Best translation best_hyp
1 hyp0 = T.translate(src0)
2 best_score = Q.evaluate(src0, hyp0)
3 best_hyp = hyp0

4 errs = E.detect_errors(src0, hyp0)
5 cands = [⟨src0, hyp0, errs⟩] // open list
6 i = 1
7 while i < N ∧ cands ̸= [ ] do
8 ⟨src, hyp, err⟩, cands =

select_one_error(cands)
9 srcann = A.propagate_error(src, hyp, err)

10 srci = P.paraphrase(srcann)
11 hypi = T.translate(srci)
12 scorei = Q.evaluate(src0, hypi)
13 if scorei > best_score then
14 best_score = scorei

15 best_hyp = hypi

16 errs = E.detect_errors(srci, hypi)
17 cands.append(⟨srci, hypi, errs⟩)
18 i = i+ 1

19 return best_hyp

3.1 Identification of the Source Text Span

In general, a translation hypothesis can contain
multiple errors derived from dispersed source text
spans. Following the incremental amelioration ap-
proach (Miyata and Fujita, 2017, 2021), we focus
on the severest error and corresponding source text
span (steps 8–9) in each iteration.

To this end, we rely on an error detector or a
span-level quality estimator E, which identifies
error spans with a severity score (steps 4 and 16).
E may not jointly detect source text spans each
corresponding to an error in the hypothesis. We
thus identify such spans by aligning the source text
tokens and those in the hypothesis using an aligner
A (step 9). Then, we determine the source span
that aligns with the severest error. Other tuples of
an error span, its corresponding source text span,
and its severity score are stored in the open list
(steps 5 and 17) for future iterations (§3.4).

3.2 Targeted Text Editing Using an LLM

Given a source text annotated with a text span, our
method then attempts to edit the span. Since the
annotated span can be linguistically diverse, from
a single symbol or word to the entire source text,
we require a robust editor that can realize diverse
types of text editing without introducing linguistic
errors and semantic changes.

To perform such monolingual text editing, we
use a decoder-only LLM, assuming that it has
learned diverse linguistic phenomena from mas-
sive text data and is well-instructed for various
text-editing tasks. In addition to the source text
and the text span to be edited, it would be useful
to instruct the LLM on the text editing task, such
as its sub-steps and constraints, with some exam-
ples if possible. To better control its output, in-
structing the LLM with prompt formatting through
few-shot examples is a promising approach (He
et al., 2024). However, we need to prepare counter-
measures against irregular outputs, such as control
sequences and an off-target format.

3.3 Translation and Evaluation
The edited source text srci is translated by the MT
system T (step 11), and the quality of the gener-
ated hypothesis hypi is evaluated by the quality
estimator Q (step 12). Text editing is not necessar-
ily successful; it may fail to edit the annotated error
source, thereby resulting in semantic drift in srci
and/or severer errors in hypi. Therefore, the quality
is evaluated with respect to the original source text
src0 rather than the corresponding source text srci
as in Ki and Carpuat (2025).

3.4 Search for the Best Translation
We search for a better translation through repeating
targeted source text editing, hypothesis generation
with the MT system, and quality assessment. Given
the high computational cost for LLM-based text
editing, it is not feasible to traverse the entire search
space. Therefore, we conduct depth-first search as
in past manual investigations (Miyata and Fujita,
2017, 2021): our method performs source text edit-
ing greedily as long as quality improves. If an edit
is confirmed to be detrimental by the quality es-
timator, it discards the edited text and selects the
second severest error of the previous version of the
source text. If no error remains, it backtracks to one
more previous version of the source text. This is
implemented in the “select_one_error()” func-
tion (step 8).

4 Preliminary Experiments

We determined the detailed settings using a small
set of Japanese-to-English translation examples and
one MT system. Henceforth, resources used in our
experiments, including datasets, pre-trained model
checkpoints, and tools, will be presented in this
manner. See Appendix A for their details.
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For this purpose, we used an NMT model pre-
trained on JParaCrawl (Morishita et al., 2022) (the
big model) and four sets of Japanese–English par-
allel data: (a) the development data of ASPEC
(Nakazawa et al., 2016) (abstracts of scientific pa-
pers), (b) the test data of WMT22 (Kocmi et al.,
2022) (mixture of several domains), (c) the test
data of MTNT (Michel and Neubig, 2018) (users’
posts on social media), and (d) the development
data of the Kyoto Free Translation Task (bench-
mark splits of the Japanese–English Bilingual
Corpus of Wikipedia’s Kyoto Articles; hence-
forth, KFTT). First, we translated the Japanese side
of these datasets into English using the MT model
and Fairseq (Ott et al., 2019), and detected trans-
lation errors using a span-level quality estimator,
XCOMET-XL (Guerreiro et al., 2024). We then
randomly extracted 25 text pairs from each dataset
that contained at least one “critical” or “major” er-
ror. Referring only to the sampled 100 (= 25× 4)
text pairs, we determined the details of our method,
including the combination of the span-level qual-
ity estimator and word aligner (Appendix C.1), the
LLM for source text editing (Appendix C.2), and
the prompt template (Appendix B.1).

To identify text spans in the source texts to be
edited, our method propagates errors identified by
XCOMET-XL, relying on optimal transport imple-
mented by OTAlign (Arase et al., 2023). We de-
termined the alignments between the tokens in the
source text and hypothesis using contextual token
embeddings obtained by InfoXLM-Base (Chi et al.,
2021), uniform distribution as the mass for each
token, cosine distance between token embeddings
as the cost function, Sinkhorn algorithm, and 0.1
as the weight for the entropy-based regularizer.

For source text editing, we used Llama-3.1-
Swallow-70B-Instruct-v0.1 (henceforth, Llama-
Swallow) (Fujii et al., 2024), an LLM trained
on massive text data of the source language, i.e.,
Japanese, and devised a prompt template for it, in-
cluding the way of specifying the source text span
to be edited and providing a one-shot paraphrase
example. Such an example was randomly sampled
from the 71 paraphrase examples in Japanese taken
from a taxonomy of paraphrases.1 The instruction
was formatted by applying a chat template using
the Language Model Evaluation Harness.

To select the best translation hypothesis among
those derived from different versions of source

1https://paraphrasing.org/paraphrase.html

texts, we also used XCOMET-XL, a reference-free
quality estimation metric.

Through the preliminary experiments, we
observed that the translation quality achieved
by our method saturated up to five iterations
(Appendix C). This is fewer than the 5.4–21.8 iter-
ations required to obtain an acceptable translation
in a manual investigation (Miyata and Fujita, 2021)
because of the limited ability of our method com-
pared with humans. The advancement of each com-
ponent, as well as their tight integration, should
improve the ability of our method.

5 Evaluation

To confirm the efficacy of our method on transla-
tion quality, we conducted experiments. Although
most components of our method are multilingual,
we had only Japanese and English speakers to write
prompt templates for source text editing and trans-
lation with LLMs. Therefore, we evaluated the
applicability of our method on Japanese-to-English
(Ja→En), Japanese-to-Chinese (Ja→Zh), English-
to-Japanese (En→Ja), and English-to-Chinese
(En→Zh) translation directions.

5.1 Settings

5.1.1 Configuration of the Proposed Method
The configuration of our method mostly follows
the details that we determined in our preliminary
experiments (§4). For both translation error detec-
tion and translation quality estimation, we used
XCOMET-XL, with one exception: we regarded
text spans annotated as “critical,” “major,” or “mi-
nor” as errors, thereby extending the target. We
used OTAlign and InfoXLM-Base for propagating
erroneous spans to the source text.

Source text editing in our method is a mono-
lingual task. Considering that an LLM trained
specifically for the source language should per-
form better than other LLMs (Appendix C.2), we
used Llama-Swallow for the Ja→En and Ja→Zh
tasks, and Llama-3.1-70B-Instruct (henceforth,
Llama) (Grattafiori et al., 2024) for the En→Ja
and En→Zh tasks. We used 71 Japanese and 44
English examples available in the aforementioned
paraphrase taxonomy1 as the pool for the one-shot
demonstration. The prompt templates are shown in
Appendix B.1.

We set the number of maximum iterations, i.e.,
N in Algorithm 1, to 5, following our preliminary
experiments (§4).

https://paraphrasing.org/paraphrase.html
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5.1.2 MT Systems
We applied our method to eight MT systems: four
NMT and four LLM-based systems. Although
we chose publicly available checkpoints for the
sake of reproducibility, we regarded them as black
boxes with the aim of simulating applications of our
method to proprietary MT systems and services.

The NMT systems were NLLB-200-3B (hence-
forth, NLLB) (NLLB Team et al., 2022) and three
sized-variants of the Ja→En and En→Ja specific
models trained on JParaCrawl (Morishita et al.,
2022), labeled as small, base, and big.

The four LLM-based MT systems were based on
two LLMs, i.e., Llama and Llama-Swallow (see
Appendix B.2 for their prompt templates), and two
methods for selecting a translation example from
a reference parallel corpus. One is BM25 (Robert-
son and Zaragoza, 2009), implemented in bm25s
(Lù, 2024), which searches the parallel corpus for
a text pair whose source side is most similar to the
given source text. To this end, the source text to be
translated and the corresponding side of the parallel
corpora were tokenized with MeCab (Kudo et al.,
2004) and Moses tokenizer (Koehn et al., 2007)
for Japanese and English, respectively. The other
method, called “vector,” identifies such a text pair
relying on sentence embeddings. We used LaBSE
(Feng et al., 2022) as the sentence encoder and
Faiss (Douze et al., 2024) for search, where we in-
dexed the source side of the parallel corpora using
product quantization with the number of subquan-
tizers of 96 and the number of bits per subvector
index of 8. As the reference parallel corpora, we
used the official training data of WMT23 (Kocmi
et al., 2023) consisting of 33.9M and 55.2M text
pairs for Japanese–English and Chinese–English
pairs, and Japanese–Chinese JParaCrawl (Nagata
et al., 2024) consisting of 4.6M text pairs.

5.1.3 Test Datasets
For Ja→En, we used four datasets: [a] the test data
of ASPEC (Nakazawa et al., 2016), [b] the test
data of WMT23 (Kocmi et al., 2023) (mixture of
several domains), [c] the test data of MTNT19 (Li
et al., 2019) (users’ posts on social media), and
[d] the test data of KFTT. For Ja→Zh, we used
[e] the test data of ASPEC. For En→Ja, we used
four datasets: [f] the test data of the Asian Lan-
guage Treebank (Riza et al., 2016) (news arti-
cles; henceforth, ALT), [g] the test data of WMT23,
[h] the test data of MTNT19, and [i] the test data
of IWSLT 2017 (Cettolo et al., 2017) (TED talks;

henceforth, IWSLT). We also used [j] the test data
of IWSLT 2017 for En→Zh.

When these datasets were translated by the target
MT systems, 61.6%–96.2% of the resulting trans-
lations contained at least one “critical,” “major,”
or “minor” error (see Appendix D for the details).
Note that our method processes only these “erro-
neous test subsets.”

5.1.4 Other Methods Compared
We regarded translation of the original source texts,
i.e., hyp0 in Algorithm 1, as the baseline. In ad-
dition, we evaluated the following “non-targeted”
methods. Unlike ours, they are unaware of the tar-
get MT system and attempt to pre-edit source texts
irrespective of potential translation errors.

Word-Sub: We replicated the word-substitution
method proposed by Koretaka et al. (2023),
which generates N -best paraphrases by substi-
tuting one word, relying on a masked language
model and cosine similarity between word em-
beddings. We used language-specific BERT
models trained through whole-word masking
(Tohoku-NLP BERT base Japanese and
Google BERT large for English) and Fast-
Text word embeddings.

Seq2seq-B: Although it is proven ineffective (Ko-
retaka et al., 2023), we trained a monolingual
sequence-to-sequence model for each source
language, following Wieting et al. (2017) (see
Appendix G for the training details), and ob-
tained N paraphrased texts using the model
via beam search with a beam size of 12.2

LLM-NT (non-targeted): We obtained N ver-
sions of source texts through iterative para-
phrasing with an LLM.3 The only difference
from our method is that the source texts were
not annotated on the basis of translation er-
rors. We thus derived the prompt templates for
Llama-Swallow and Llama from those for
our method (Appendix B.1) by removing the
step-wise instruction for error-informed text
editing while retaining the criteria to meet.

Each of the N paraphrased source texts and the
original source text was translated separately by the
given MT system, and the best translation among

2We also examined nucleus sampling with top_p = 0.95
but it underperformed beam search in most configurations.

3With N = 1, this is similar to one of the MT-Agnostic
rewriting methods examined by Ki and Carpuat (2025).
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MT System
Editing
Method

Ja→En Ja→Zh En→Ja En→Zh
#+ #- #wASPEC WMT23 MTNT19 KFTT ASPEC ALT WMT23 MTNT19 IWSLT IWSLT

[a] [b] [c] [d] [e] [f] [g] [h] [i] [j]

NLLB
[1]

Baseline 81.18 74.80 68.59 64.28 83.76 87.99 81.41 77.23 82.83 79.51 - - 0
Word-Sub 81.47* 76.40* 70.50* 66.91* 84.05* 88.70* 83.35* 79.43* 84.44* 79.95* 10 0 1
Seq2seq-B 81.08 75.78* 70.09* 66.51* 83.55* 88.86* 83.29* 79.25* 84.16* 79.97* 8 1 1
LLM-NT 81.58* 76.73* 71.32* 66.52* 84.10* 88.85* 84.56* 81.35* 85.09* 80.68* 10 0 7

Ours 81.67* 76.24* 70.36* 65.90* 83.90* 88.52* 82.71* 78.50* 83.29* 79.83* 10 0 1

JParaCrawl
(small)

[2]

Baseline 81.75 76.92 72.77 73.46 - 85.74 80.26 74.69 79.73 - - - 0
Word-Sub 81.95* 77.85* 73.44* 73.68 - 86.44* 80.51 74.04* 80.63* - 5 1 0
Seq2seq-B 81.66 77.29* 72.72 73.14 - 86.60* 80.84* 74.73 80.42* - 4 0 0
LLM-NT 82.12* 78.25* 74.17* 74.11* - 87.15* 83.38* 79.36* 82.74* - 8 0 5

Ours 82.27* 78.57* 74.08* 74.19* - 86.74* 82.34* 77.29* 81.88* - 8 0 3

JParaCrawl
(base)

[3]

Baseline 82.30 77.75 72.67 74.52 - 86.77 80.96 75.22 80.43 - - - 0
Word-Sub 82.45* 78.40* 73.76* 74.63 - 87.29* 81.35* 73.77* 81.13* - 6 1 0
Seq2seq-B 82.09* 78.00* 72.85 74.32 - 87.19* 81.64* 75.26 81.00* - 4 1 0
LLM-NT 82.57* 78.98* 74.54* 75.09* - 87.93* 83.84* 79.66* 83.15* - 8 0 4

Ours 82.71* 79.15* 74.49* 75.30* - 87.94* 83.14* 77.97* 82.58* - 8 0 4

JParaCrawl
(big)
[4]

Baseline 82.87 79.26 74.96 76.25 - 88.04 82.31 76.36 81.63 - - - 0
Word-Sub 82.96 79.61* 74.23* 76.50 - 88.30* 82.78* 75.70* 82.21* - 4 2 0
Seq2seq-B 82.63* 79.26 74.35* 75.27* - 88.45* 82.75* 76.55 82.22* - 3 3 0
LLM-NT 83.09* 79.96* 75.68* 76.76* - 88.94* 84.75* 80.59* 83.96* - 8 0 6

Ours 83.06* 80.01* 75.72* 76.50 - 88.91* 84.12* 79.32* 83.19* - 7 0 2

Llama
(BM25)

[5]

Baseline 81.61 80.45 75.26 76.96 86.57 89.62 85.51 82.32 81.64 81.86 - - 0
Word-Sub 82.92* 81.20* 76.17* 77.98* 86.72 89.96* 86.25* 82.88* 83.13* 83.00* 9 0 6
Seq2sec-B 82.63* 80.71 75.84* 77.46 86.34* 89.96* 86.23* 83.04* 82.91* 83.07* 7 1 1
LLM-NT 82.56* 81.13* 76.32* 77.71* 86.69* 89.63 86.12* 83.31* 83.89* 83.17* 9 0 4

Ours 81.76* 80.98* 75.93* 77.41* 86.57 89.70 86.06* 83.25* 83.33* 82.79* 8 0 0

Llama
(vector)

[6]

Baseline 81.98 80.67 74.75 76.82 86.37 89.86 85.92 82.44 81.85 82.21 - - 0
Word-Sub 82.90* 81.47* 76.07* 77.96* 86.81* 89.92 86.54* 83.49* 83.57* 83.05* 9 0 6
Seq2sec-B 82.57* 80.82 75.55* 77.36* 86.31 90.00 86.56* 82.76 82.91* 82.74* 6 0 2
LLM-NT 82.57* 81.23* 75.80* 77.44* 86.65* 89.70 86.21 83.74* 84.16* 82.94* 8 0 2

Ours 82.16* 81.08* 75.54* 77.00 86.38 90.00 86.38* 83.10* 83.10* 82.78* 7 0 1

Llama-Swallow
(BM25)

[7]

Baseline 80.84 80.52 75.14 77.15 86.54 90.68 86.40 83.38 83.83 81.83 - - 1
Word-Sub 82.06* 81.60* 76.32* 78.45* 86.37* 90.96* 87.12* 84.08* 85.34* 82.20* 9 1 2
Seq2sec-B 82.41* 81.25* 76.40* 77.97* 86.02* 90.92* 87.01* 83.93* 85.04* 82.47* 9 1 1
LLM-NT 82.08* 81.66* 76.44* 78.09* 86.51 90.80 87.16* 84.38* 85.69* 82.52* 8 0 6

Ours 80.76 80.85* 75.27 77.19 86.20* 90.92* 87.01* 84.05* 85.14* 82.21* 6 1 0

Llama-Swallow
(vector)

[8]

Baseline 81.40 80.93 74.62 77.69 86.48 90.85 86.75 83.46 84.34 81.76 - - 1
Word-Sub 82.64* 81.94* 76.38* 78.38* 86.36 91.16* 87.47* 84.06* 85.67* 82.48* 9 0 7
Seq2sec-B 82.72* 81.21 75.87* 78.00 86.05* 91.05* 87.33* 83.96* 85.05* 82.30* 7 1 1
LLM-NT 82.36* 81.65* 76.27* 78.25* 86.37 90.96 87.22* 84.29* 85.62* 82.46* 8 0 0

Ours 81.38 81.33* 75.32* 77.58 86.07* 90.96 87.16* 84.30* 85.43* 82.01 5 1 1

Table 1: COMET scores for the entire test sets. Bold indicates the improvement over the Baseline, underlining so
does the best score among all the methods, the “#+” and “#-” columns show the number of test datasets for which
the method achieved a significantly better or worse score (marked with “*”) than the Baseline, respectively, and the
“#w” column presents the number of datasets for which the method achieved the best score for each MT system.

(N + 1) hypotheses was selected by XCOMET-XL
similarly to our method.4

5.1.5 Evaluation Metric

To evaluate the translation quality of MT outputs,
we used the COMET score (Rei et al., 2020),
specifically with the wmt22-comet-da checkpoint
(Rei et al., 2022). We performed paired bootstrap
resampling (Koehn, 2004) to test the statistical sig-
nificance of the score difference from the baseline.

4XCOMET-XL achieved consistently better results than
mBART used in Koretaka et al. (2023) in our preliminary
experiments, although it was substantially slow.

5.2 Results

The COMET scores of all the methods in 74 test
configurations are presented in Table 1. For the
four NMT systems (the upper half), the LLM-based
text editing methods, i.e., LLM-NT and ours, sig-
nificantly improved translation quality, with only
one exception. The word-substitution method also
led to a significant gain in roughly 70% of config-
urations, outperforming the sequence-to-sequence
method. For the LLM-based MT systems (the bot-
tom half), the LLM-based text editing methods and
the word-substitution method also achieved signifi-
cant improvements. The word-substitution method
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MT System
Editing
Method

Ja→En Ja→Zh En→Ja En→Zh
#+ #- #wASPEC WMT23 MTNT19 KFTT ASPEC ALT WMT23 MTNT19 IWSLT IWSLT

[a] [b] [c] [d] [e] [f] [g] [h] [i] [j]

NLLB
[1]

Baseline 79.71 72.94 67.92 66.49 84.01 87.48 82.25 78.79 83.72 79.70 - - 0
Word-Sub 80.07* 74.28* 69.34* 68.20* 84.16* 87.95* 83.22* 79.64* 84.12* 79.69 9 0 0
Seq2seq-B 79.48* 73.62* 68.70* 67.54* 83.64* 88.11* 83.19* 79.66* 84.13* 79.89 7 2 0
LLM-NT 80.21* 74.96* 70.26* 68.01* 84.25* 88.13* 84.22* 81.20* 84.55* 80.26* 10 0 5

Ours 80.43* 75.11* 70.48* 68.44* 84.16* 88.15* 83.90* 80.44* 84.33* 80.09* 10 0 5

JParaCrawl
(small)

[2]

Baseline 80.38 74.70 71.54 73.45 - 84.98 79.25 73.80 78.18 - - - 0
Word-Sub 80.66* 75.78* 72.13* 73.61 - 85.76* 79.53 73.05* 79.18* - 5 1 0
Seq2seq-B 80.25 75.10* 71.30 73.10* - 85.89* 79.87* 73.77 78.92* - 4 1 0
LLM-NT 80.86* 76.43* 72.80* 74.06* - 86.45* 82.65* 78.71* 81.66* - 8 0 4

Ours 81.10* 76.82* 73.16* 74.24* - 86.11* 81.62* 76.74* 80.76* - 8 0 4

JParaCrawl
(base)

[3]

Baseline 81.04 75.38 70.84 74.48 - 85.91 79.87 74.51 78.93 - - - 0
Word-Sub 81.24* 76.18* 72.08* 74.56 - 86.46* 80.23* 72.98* 79.72* - 6 1 0
Seq2seq-B 80.76* 75.63 70.88 74.25 - 86.39* 80.56* 74.51 79.61* - 3 1 0
LLM-NT 81.40* 76.96* 72.92* 75.09* - 87.22* 83.04* 79.19* 82.11* - 8 0 3

Ours 81.60* 77.21* 73.12* 75.32* - 87.27* 82.37* 77.66* 81.51* - 8 0 5

JParaCrawl
(big)
[4]

Baseline 81.61 77.10 73.20 76.34 - 87.08 81.00 75.62 79.82 - - - 0
Word-Sub 81.73 77.53* 72.17* 76.58 - 87.38* 81.50* 74.86* 80.58* - 4 2 0
Seq2seq-B 81.27* 77.00 72.45* 75.41* - 87.56* 81.49* 75.76 80.56* - 3 3 0
LLM-NT 81.91* 78.02* 73.90* 76.82* - 88.14* 83.76* 80.11* 82.76* - 8 0 6

Ours 81.90* 78.13* 74.18* 76.61 - 88.12* 83.14* 78.98* 81.78* - 7 0 2

Llama
(BM25)

[5]

Baseline 82.05 79.24 74.23 78.47 86.58 89.02 84.76 81.39 81.02 81.40 - - 0
Word-Sub 82.41* 79.69* 74.51 78.85* 86.62 89.25 85.32* 81.81 82.34* 82.29* 6 0 1
Seq2seq-B 81.86* 78.80* 73.77 78.05* 86.21* 89.35* 85.37* 81.93* 82.11* 82.38* 5 4 1
LLM-NT 82.25* 79.70* 74.84* 78.58 86.65 89.01 85.21* 82.29* 83.18* 82.44* 7 0 1

Ours 82.27* 80.04* 75.17* 78.96* 86.57 89.12 85.46* 82.55* 83.22* 82.48* 8 0 7

Llama
(vector)

[6]

Baseline 82.10 79.48 73.75 78.25 86.61 89.23 84.89 81.52 81.22 81.66 - - 0
Word-Sub 82.33* 79.93* 74.44* 78.54 86.69 89.24 85.49* 82.36* 82.64* 82.39* 7 0 2
Seq2seq-B 81.77* 79.02* 73.79 77.75* 86.18* 89.25 85.50* 81.66 82.10* 82.07* 3 4 1
LLM-NT 82.28* 79.79* 74.40* 78.57 86.68 88.91 85.07 82.59* 83.36* 82.25* 4 1 3

Ours 82.36* 80.10* 74.87* 78.45 86.62 89.43 85.48* 82.36* 82.87* 82.32* 7 0 4

Llama-Swallow
(BM25)

[7]

Baseline 82.33 79.79 75.29 78.76 86.62 89.82 85.31 82.27 82.61 81.23 - - 1
Word-Sub 82.12* 79.90 74.90 78.86 86.29* 90.20* 86.07* 82.75* 84.30* 81.50 4 2 1
Seq2seq-B 81.81* 79.39* 74.59* 78.30* 85.88* 90.10* 85.95* 82.59 83.77* 81.85* 4 5 1
LLM-NT 82.41 79.92 75.08 78.98 86.49* 89.94 86.14* 83.10* 84.63* 81.78* 4 1 4

Ours 82.20 80.32* 75.49 78.79 86.25* 90.15* 86.13* 83.14* 84.40* 81.66* 6 1 3

Llama-Swallow
(vector)

[8]

Baseline 82.29 80.03 74.50 78.85 86.59 90.00 85.75 82.13 83.18 81.20 - - 1
Word-Sub 82.24 80.22 74.99 78.78 86.29* 90.32* 86.46* 82.73* 84.64* 81.81* 5 1 3
Seq2seq-B 81.84* 79.40* 74.32 78.35* 85.93* 90.24* 86.29* 82.59* 83.88* 81.66* 5 4 0
LLM-NT 82.37 80.28 75.23* 78.97 86.37* 90.08 86.12* 83.10* 84.49* 81.74* 5 1 2

Ours 82.25 80.67* 75.55* 78.73 86.14* 90.15 86.31* 83.22* 84.69* 81.47 5 1 4

Table 2: COMET scores for the erroneous test subsets (§5.1.3). See Table 1 for text decoration and symbols.

achieved the highest COMET score in more than
50% of configurations, whereas our method lagged
behind it and LLM-NT.

Unlike existing non-targeted methods, our
method edits only the erroneous test subsets
(§5.1.3). Table 2 compares the COMET scores
for these subsets, revealing the advantage of
our method and diminished impact of the non-
targeted methods. Our method achieved the highest
COMET score in 34 out of 74 configurations, fol-
lowed by LLM-NT which won in 28.

From these results, we conclude that the LLMs
performed source text editing for MT more ro-
bustly and accurately than the existing methods.
However, our targeted method is not yet incon-
testably superior over its non-targeted counterpart,

i.e., LLM-NT. For instance, the prompt template
developed with Ja→En examples had a minimal or
negative impact on the Ja→Zh task, in particular
with Llama-Swallow. In contrast, the equivalent
prompt template manually translated into English
worked fairly well, encouraging future applications
of our method to other source languages.

6 Analyses

To better understand the characteristics of our
method, we conducted several analyses, focusing
on the erroneous test subsets (§5.1.3).

6.1 System-wise and Dataset-wise Impact
We hypothesize that the worse the quality of an
MT output for the original source text is, the more
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MT System
Ja→En Ja→Zh En→Ja En→Zh

ASPEC WMT23 MTNT19 KFTT ASPEC ALT WMT23 MTNT19 IWSLT IWSLT
[a] [b] [c] [d] [e] [f] [g] [h] [i] [j]

NLLB [1] -0.381 -0.401 -0.416 -0.388 -0.324 -0.453 -0.540 -0.444 -0.340 -0.359
JParaCrawl (small) [2] -0.368 -0.437 -0.339 -0.292 - -0.375 -0.434 -0.340 -0.452 -
JParaCrawl (base) [3] -0.392 -0.389 -0.385 -0.324 - -0.493 -0.454 -0.373 -0.489 -
JParaCrawl (big) [4] -0.393 -0.391 -0.382 -0.275 - -0.479 -0.481 -0.437 -0.461 -
Llama (BM25) [5] -0.353 -0.381 -0.322 -0.342 -0.269 -0.237 -0.400 -0.385 -0.633 -0.565
Llama (vector) [6] -0.340 -0.380 -0.342 -0.231 -0.297 -0.264 -0.369 -0.347 -0.573 -0.486

Llama-Swallow (BM25) [7] -0.228 -0.338 -0.335 -0.262 -0.215 -0.480 -0.466 -0.391 -0.683 -0.457
Llama-Swallow (vector) [8] -0.281 -0.345 -0.347 -0.163 -0.157 -0.470 -0.394 -0.395 -0.619 -0.460

Table 3: Pearson product-moment correlation coefficients r between the baseline COMET score and its gain
achieved by our method. See Appendix D for the number of segments in each configuration.

it should benefit from avoiding underlying transla-
tion errors by source text editing. To examine this,
we calculated the correlation between the baseline
COMET score and its gain. Table 3 summarizes
segment-level correlation coefficients. Although
there was moderate negative correlation for most
configurations, we observed that others, such as
the Ja→Zh ASPEC dataset translated by the LLM-
based MT systems, did not follow the rule. In
general, correlation for the LLM-based MT sys-
tems was weaker than those for the NMT systems,
except for the two IWSLT tasks, and more diverse
over the datasets. This implies that these LLMs
had peculiar characteristics. For instance, some of
the test datasets might have already been learned
by them, unlike the NMT systems.

Figure 1 visualizes the correspondences between
the baseline COMET score and its gain for each er-
roneous test subset. Our method had a stronger cor-
relation than the other methods. One may consider
that our method could be less impactful for very
accurate MT systems, such as “black-box” propri-
etary systems. Despite this, we consider that our ap-
proach still has potential, because its advancement
is orthogonal to the enhancements of those MT
systems. For instance, we developed our method
using only one NMT system and a small sample
of Ja→En sentence pairs (§4), but it worked well
for other translation directions (4f–4i) and stronger
LLM-based MT systems (e.g., 5g–8i). Through
our extensive experiments, we identified configu-
rations where the current form of our method did
not work well, such as the two ASPEC and KFTT
tasks. We will conduct in-depth analyses to explore
the reasons and address them in our future work.

6.2 Quality Estimator

We investigated whether the segment-level quality
estimator, i.e., XCOMET-XL, was useful for search-
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Figure 1: Baseline COMET score for the erroneous
test subsets and its gain achieved by our method (r =
−0.522). “1” to “8” and “a” to “j” are the indices of the
MT systems and test datasets, respectively.

ing for the best translation. Figure 2 shows that the
estimated quality monotonically improved during
the search as intended; 1.91–8.48 and 2.46–11.05
points with N = 1 and N = 5, respectively. How-
ever, the final COMET score shown in Figure 3 did
not follow the same trend, even though these two
measures correlated well at the segment level in our
experiments (0.292–0.762, Appendix E). For in-
stance, in the two configurations where our method
significantly deteriorated the COMET score, i.e.,
the two variants based on Llama-Swallow for the
Ja→Zh ASPEC task (7e and 8e shown at top right
of Figure 3), the correlation coefficient between
the two measures was moderate (0.534 and 0.519).
In contrast, the configurations with a weakest cor-
relation, i.e., the JParaCrawl variants applied to
the En→Ja IWSLT task (2e–4e, r = 0.292–0.296),
achieved a 2.0–2.5 COMET point gain.

This discrepancy suggests that the segment-level
quality estimator was a vital component, and thus
requires further improvements to capture subtle
differences between accurate translations.
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Figure 2: Translation quality estimated by XCOMET-XL without reference at each iteration of our method.
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Figure 3: COMET score computed by wmt22-comet-da with a reference at each iteration of our method.

6.3 Source Text Editor

We quantified the degree of text editing performed
by each method, with the translation error rate
(TER) (Snover et al., 2006) at the dataset level.
More specifically, we tokenized Japanese and En-
glish texts using MeCab (Kudo et al., 2004) and
Moses tokenizer (Koehn et al., 2007), respec-

tively, and computed TER using SacreBLEU (Post,
2018),5 regarding the original and edited source
texts as the reference and hypothesis, respectively.

Figure 4 shows that our method altered 9%–
37% of linguistic tokens. The ratio was higher

5Signature: nrefs:1|case:lc|tok:tercom|norm:no|punct:yes|
asian:no|version:2.5.1
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Figure 4: Translation edit rate (TER) between the original source text src0 and each of its edited versions srci
generated by our method. Because of the search function, srci+1 was not necessarily obtained from srci directly.

than those exhibited by the word-substitution
method (9%–19%; Appendix F), except for the
two ASPEC tasks (9%–16% vs. 17%–19%), and
lower than those performed by the other two non-
targeted methods (12%–76% and 19%–68% by the
sequence-to-sequence and LLM-NT methods, re-
spectively; Appendix F). We also observed that the
ratio varied across the targeted MT systems.

The modest ratio of our method reflects the
length distribution of the translation error spans
and corresponding source text spans identified by
XCOMET-XL and OTAlign. We thus consider that
the LLMs properly conformed to the instruction
for targeted text editing.

Note that we do not consider the ratio to be a
good indicator of better translations.

7 Conclusion

As an approach to exploiting black-box MT sys-
tems, we focused on automatic and targeted source
text editing. To overcome the two issues that re-
main in the literature, i.e., the limited ability of
editing and unawareness of actual translation er-
rors, we used LLMs, expecting that they would
have sufficiently high competence to realize diverse
types of edits that can improve translation quality
(Miyata and Fujita, 2017, 2021) and a segment-
level quality estimator as in a concurrent work

(Ki and Carpuat, 2025), and implemented targeted
paraphrasing (Uchimoto et al., 2006; Resnik et al.,
2010) by harnessing a span-level quality estimator
(error detector) and a word aligner.

Our experiments with eight MT systems and
ten test datasets for four translation directions con-
firmed the efficacy of our method in improving
translation quality, while the non-targeted coun-
terpart (LLM-NT) also achieved a rivaling perfor-
mance. Through the analyses, we identified that the
impact of our method varied depending on the MT
system and dataset, and that the segment-level qual-
ity estimator is the vital component that requires
further improvements.

Future work includes improving each component
of our method, while simplifying and speeding up
the whole pipeline. Since our method focuses on
source texts that lead to translation errors accord-
ing to an error detector, applying LLM-NT to other
error-free segments will be a straightforward way
for improving translation for entire datasets. Only
prompt templates are language dependent; hence,
we plan to evaluate the applicability of our method
to other translation tasks as well as other MT sys-
tems, including proprietary ones. We are also inter-
ested in assessing the applicability of the proposed
method to other text-to-text tasks, including text
summarization and text simplification.
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Limitations

As observed in our experiments, the gain of the
COMET score achieved by our method and com-
peting methods depended on the target MT sys-
tems and test datasets. In addition, the COMET
score may evaluate the translation quality only
from limited perspectives, heavily relying on a
single reference translation. Thus, our results do
not guarantee the same conclusions for other MT
systems, datasets, and translation directions. For
instance, our method may not work well for trans-
lating from/into low-resource languages, provided
that the component models of our method, i.e.,
quality estimator, error detector, aligner, and para-
phraser, have not been trained for those languages
and thereby perform less accurately.

We used COMET (wmt22-comet-da) for evalu-
ating the translation quality, following Freitag et al.
(2022); they reported that it achieved the highest
correlation with human rating among reproducible
automatic metrics. However, recent work, such as
Agrawal et al. (2024), demonstrated that XCOMET-
XL surpassed COMET. Evaluating with XCOMET-
XL may lead to different conclusions. The discrep-
ancy between reference-free and reference-based
metrics observed in Figures 2 and 3 could be re-
solved. On the other hand, the use of the same
model for search and evaluation may lead to a bias.
To confirm the gain in translation quality, human
evaluation is indispensable.

We made large efforts to refine the prompt tem-
plates for text editing and translation with LLMs.
However, there is still room for improvement.
While our prompt templates (Appendix B.1) fol-
low the spirit of “targeted paraphrasing” (Uchimoto
et al., 2006; Resnik et al., 2010), a concurrent work
(Ki and Carpuat, 2025) has demonstrated that the
instruction for text simplification results in better
translations than instructing on the paraphrasing
task. The optimized templates for an LLM may not
work well for other LLMs.

LLM-based source text editing requires substan-
tially larger computes than existing methods that
do not rely on LLMs. However, we assume that
the latency with N = 5 and eight NVIDIA Tesla

V100 GPUs is acceptable for the existing transla-
tion production process (ISO/TC37, 2017), where
the manual post-editing step governs latency. We
expect that recent advances in smaller language
models and model compression will make our ap-
proach faster and consequently more feasible.

Ethics Statements

The resulted translations had, on average, a higher
quality according to the COMET score. However,
translation errors should remain. Therefore, the
direct use of MT outputs could mislead potential
users.
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Dvorkovich, Christian Federmann, Mark Fishel,
Thamme Gowda, Yvette Graham, Roman Grund-
kiewicz, Barry Haddow, Rebecca Knowles, Philipp
Koehn, Christof Monz, Makoto Morishita, Masaaki
Nagata, Toshiaki Nakazawa, Michal Novák, Martin
Popel, and Maja Popović. 2022. Findings of the 2022
Conference on Machine Translation (WMT22). In
Proceedings of the Seventh Conference on Machine
Translation, pages 1–45.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Natu-
ral Language Processing, pages 388–395.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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A Public Resources Used

Table 4 lists the links to the resources, including
the datasets, pre-trained model checkpoints, and
tools, used in our experiments (Sections 4–6).

B Prompt Templates

B.1 For Targeted Source Text Editing

Figure 5 presents the prompt templates used for
our targeted source text editing. To perform this
task, we used an LLM that is mainly trained on
the language of interest, i.e., Llama-Swallow for
Japanese and Llama for English, and provided
prompts in the same language. Pairs of double
brackets (“{{” and “}}”) indicate placeholders.
Given a source text to be edited, a tailored prompt
is automatically instantiated by filling these place-
holders.

B.2 For Translation

Figure 6 presents the prompt templates used for
MT. In the same manner as for source text edit-
ing, we provided prompts in the language for
which the LLM was recently and mainly trained
on, i.e., Japanese for Llama-Swallow and English
for Llama. The role of double brackets is the same
as for source text editing.

C Preliminary Experiments

As described in §4, we explored a better way
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and the LLM used for source text editing, us-
ing the sampled set of 100 parallel sentences and
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(big).
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Datasets

Asian Language Treebank (ALT), https://huggingface.co/datasets/mutiyama/alt
ASPEC, https://jipsti.jst.go.jp/aspec/
IWSLT 2017, https://huggingface.co/datasets/IWSLT/iwslt2017
Japanese-English Bilingual Corpus of Wikipedia’s Kyoto Articles, https://alaginrc.nict.go.jp/WikiCorpus/, 2.01
JParaCrawl, https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/, v3.0
Kyoto Free Translation Task (KFTT), https://www.phontron.com/kftt/, 1.4
MTNT, https://github.com/pmichel31415/mtnt/, v1.1
MTNT19, https://pmichel31415.github.io/mtnt/, MTNT2019.tar.gz
WMT22 Test sets, https://github.com/wmt-conference/wmt22-news-systems, v1.1
WMT23 Test sets, https://github.com/wmt-conference/wmt23-news-systems, v0.1

Pre-trained model checkpoints

FastText word embeddings, https://fasttext.cc/docs/en/crawl-vectors.html
Google BERT large, https://huggingface.co/google-bert/bert-large-cased-whole-word-masking
InfoXLM-Base, https://huggingface.co/microsoft/infoxlm-base
JParaCrawl NMT Models, https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/, based on v3.0
LaBSE, https://huggingface.co/sentence-transformers/LaBSE
Llama-3.1-70B-Instruct, https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
Llama-3.1-8B-Instruct, https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
Llama-3.1-Swallow-70B-Instruct-v0.1, https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1
Llama-3.1-Swallow-8B-Instruct-v0.1, https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1
M2M100-418M, https://huggingface.co/facebook/m2m100_418M
NLLB-200-3.3B, https://huggingface.co/facebook/nllb-200-3.3B
Tohoku-NLP BERT base Japanese, https://huggingface.co/tohoku-nlp/bert-base-japanese-whole-word-masking
wmt22-comet-da, https://huggingface.co/Unbabel/wmt22-comet-da
XCOMET-XL, https://huggingface.co/Unbabel/XCOMET-XL

Tools

bm25s, https://github.com/xhluca/bm25s, 0.2.6
COMET, https://github.com/Unbabel/COMET, 2.2.5
Fairseq, https://github.com/facebookresearch/fairseq, v0.12.2
Faiss, https://github.com/facebookresearch/faiss, v1.7.2
Language Model Evaluation Harness, https://github.com/EleutherAI/lm-evaluation-harness, v0.4.3
MeCab, https://taku910.github.io/mecab/, 0.996
Moses tokenizer, https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl, RELEASE-4.0
OTAlign, https://github.com/yukiar/OTAlign, 79fefaa
SacreBLEU, https://github.com/mjpost/sacrebleu, v2.5.1
SentencePiece, https://github.com/google/sentencepiece, v0.2.0

Table 4: Public resources used in our experiments.

Direct: The error detector, XCOMET-XL, anno-
tates only erroneous text spans in the hypothe-
sis. This method examines whether it can di-
rectly annotate the source text spans by swap-
ping the source text and hypothesis.

Propagation: A combination of XCOMET-XL for
annotating erroneous text spans in the hypoth-
esis and a word aligner, OTAlign, to propagate
those spans to the source text.

Figure 7 shows the results with Llama-Swallow
for Japanese source text editing (Appendix C.2).
The “Propagation” method achieved the highest
COMET score with any value of N up to 5, even
though it should have involved prediction errors of
both the error detector and word aligner. Interest-
ingly, with the “Random” text spans, our method
improved the COMET score up to 1.0 point. Even
though the “Direct” assessment of the source text
led to a higher COMET score than “Random,” it
lagged behind “Propagation.”

We thus chose the “Propagation” method in our
experiments in §5, whose prediction could become
even more accurate if the two components are im-
proved. In addition, in the literature on translation
quality estimation, researchers have attempted to
determine source text spans corresponding to trans-
lation errors (Specia et al., 2020, 2021; Fomicheva
et al., 2021). Although this line of research is out
of scope in the recent series of shared tasks, we
believe it is worth considering, in particular for
promoting source text editing.

C.2 LLMs for Text Editing
A number of LLMs are publicly available, but the
extent to which they perform the source text editing
task is unknown. We considered that instruction
tuning is necessary. Hence, we compared the fol-
lowing four LLMs that differ in the existence of
language-specific adaptation and model size.

Llama-Swallow-70B: The Llama model with
70B parameters, continually pre-trained on

https://huggingface.co/datasets/mutiyama/alt
https://jipsti.jst.go.jp/aspec/
https://huggingface.co/datasets/IWSLT/iwslt2017
https://alaginrc.nict.go.jp/WikiCorpus/
https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
https://www.phontron.com/kftt/
https://github.com/pmichel31415/mtnt/
https://pmichel31415.github.io/mtnt/
https://github.com/wmt-conference/wmt22-news-systems
https://github.com/wmt-conference/wmt23-news-systems
https://fasttext.cc/docs/en/crawl-vectors.html
https://huggingface.co/google-bert/bert-large-cased-whole-word-masking
https://huggingface.co/microsoft/infoxlm-base
https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1
https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1
https://huggingface.co/facebook/m2m100_418M
https://huggingface.co/facebook/nllb-200-3.3B
https://huggingface.co/tohoku-nlp/bert-base-japanese-whole-word-masking
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/XCOMET-XL
https://github.com/xhluca/bm25s
https://github.com/Unbabel/COMET
https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/faiss
https://github.com/EleutherAI/lm-evaluation-harness
https://taku910.github.io/mecab/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/yukiar/OTAlign
https://github.com/mjpost/sacrebleu
https://github.com/google/sentencepiece
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� �
日本語文の言い換え文を出力してください。
手順は次の通りです。
1. 日本語文の¶¶で囲まれた言い換え対象表現について、同じ意味を持つ異なる表現の言
い換え候補を1個から5個挙げてください。
2. 手順1で挙げた言い換え候補の中から、日本語文の¶¶で囲まれた箇所を言い換えるの
に、最も適切な候補を1つ選んでください。
3. 日本語文の¶¶で囲まれた箇所を、手順2で選ばれた最適な言い換え候補を使用して置換
してください。この際、以下の基準を満たすように文脈に合わせて適切に調整してくだ
さい。
・文脈に応じて、適切な動詞の活用形や助詞を使うこと。
・元の文の意味を正確に伝えること。
・文法的に正しい構文を持つこと。

入力例:
日本語文: {{paraphrase["example_original"]}}
言い換え対象表現: {{paraphrase["example_original_span"]}}
出力例:
{"言い換え文":"{{paraphrase["example_paraphrase"]}}"}

日本語文: {{paraphrase["annotated_src"]}}
言い換え対象表現: {{paraphrase["propagate_error_span"]}}� �

(a) Prompt template used for Llama-Swallow to edit Japanese source text.� �
Please output a paraphrased sentence for a given English sentence.
The procedure is as follows:
1. For the target expression for paraphrasing marked with ¶¶ in the English sentence, provide 1 to 5
paraphrase candidates with the same meaning and different expressions.
2. Select one among the paraphrase candidates generated in step 1 that is most appropriate for
paraphrasing the part marked with ¶¶ in the English sentence.
3. Replace the part marked with ¶¶ in the English sentence with the paraphrase candidate selected
in step 2. At the same time, please perform necessary adjustment to make it fit the context while
meeting the following criteria.
・Use appropriate conjugation form of words and particles according to the context.
・Convey the original meaning of the sentence accurately.
・Maintain the grammatically correct structure of the sentence.

Input example:
English sentence: {{paraphrase["example_original"]}}
Target expression for paraphrasing: {{paraphrase["example_original_span"]}}
Output example:
{"paraphrased_sentence":"{{paraphrase["example_paraphrase"]}}"}

English sentence: {{paraphrase["annotated_src"]}}
Target expression for paraphrasing: {{paraphrase["propagate_error_span"]}}� �

(b) Prompt template used for Llama to edit English source text.

Placeholder Content to be filled

paraphrase["example_original"] Source text of the retrieved example
paraphrase["example_original_span"] Targeted span in the above text
paraphrase["example_paraphrase"] Paraphrased text of the retrieved example
paraphrase["annotated_src"] Source text to be edited
paraphrase["propagated_error_span"] Targeted span in the above text to be edited

(c) Placeholders in the prompt templates for text editing.

Figure 5: Prompt templates used for source text editing.

a massive text data in Japanese (Fujii et al.,
2024).

Llama-Swallow-8B: A smaller model obtained
in the same manner as above.

Llama-70B: The 70B parameter model not spe-
cially adapted to Japanese (Grattafiori et al.,
2024).

Llama-8B: A smaller model obtained in the same

manner as above.

We also evaluated manual source text editing per-
formed by the first author, which cannot be the up-
per bound, but is a good reference. Note that other
components, including source text span detection
method and prompt templates, were the same as
our final method.

Figure 8 demonstrates that the four LLMs and
human editor had a clear order in the COMET score
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� �
{{source_language}}を{{target_language}}に翻訳してください。

入力例:
英語文: {{translation["example_src"]}}
出力例:
{"翻訳文":"{{translation["example_tgt"]}}"}

英語文: {{translation["src"]}}� �
(a) Prompt template used for translation with Llama-Swallow.� �

Please translate the {{source_language}} sentence into {{target_language}}.

Input example:
Japanese sentence: {{translation["example_src"]}}
Output example:
{"translation":"{{translation["example_tgt"]}}"}

{{source_language}} sentence: {{translation["src"]}}� �
(b) Prompt template used for translation with Llama.

Placeholder Content to be filled

source_language Source language (e.g., “Japanese”)
target_language Target language (e.g., “English”)
translation["example_src"] Source text of the retrieved translation example
translation["example_tgt"] Target text of the retrieved translation example
translation["src"] Source text to be translated

(c) Placeholders in the prompt templates for translation.

Figure 6: Prompt templates used for translation.
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Figure 7: COMET scores achieved by different source
text span detection methods.

with any value of N up to 5. When we compared
LLMs with the same sizes, Llama-Swallow outper-
formed Llama, which confirms the benefit of adap-
tation to the language of interest. We also found
that smaller LLMs were not as good as their larger
counterpart. Although some coincidences could
exist, the non-adapted small LLM, i.e., Llama-8B,
did not improve the COMET score at all. Follow-
ing the results, we used Llama-Swallow-70B for
editing source texts in Japanese, and analogously
Llama-70B for English (§5.1.1).

At the time of this preliminary experiment, we
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Figure 8: COMET scores achieved by different source
text editors.

required a sufficiently large model. However, re-
cent advances in smaller language models will lead
to a better balance of cost and benefit.

D Erroneous Test Subsets

Our method attempts to avoid translation errors.
Thus, we mainly evaluated and analyzed our
method focusing on the erroneous test subsets de-
termined using XCOMET-XL (§5.1.3).

Table 5 summarizes the number of lines contain-
ing at least one “critical,” “major,” or “minor” error
when translating with each MT system.
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MT System
Ja→En Ja→Zh En→Ja En→Zh

ASPEC WMT23 MTNT19 KFTT ASPEC ALT WMT23 MTNT19 IWSLT IWSLT
[a] [b] [c] [d] [e] [f] [g] [h] [i] [j]

NLLB [1] 1,233 1,332 766 961 2,026 823 1,638 1,077 1,097 1,207
JParaCrawl (small) [2] 1,314 1,544 894 1,069 - 900 1,817 1,225 1,215 -
JParaCrawl (base) [3] 1,312 1,514 888 1,065 - 879 1,802 1,214 1,211 -
JParaCrawl (big) [4] 1,224 1,432 862 1,077 - 844 1,755 1,225 1,163 -
Llama (BM25) [5] 1,261 1,321 795 1,037 2,003 767 1,630 1,126 1,114 1,264
Llama (vector) [6] 1,253 1,331 789 1,040 1,979 748 1,612 1,110 1,101 1,272

Llama-Swallow (BM25) [7] 1,141 1,262 732 1,029 1,940 729 1,538 1,072 1,064 1,295
Llama-Swallow (vector) [8] 1,117 1,250 733 1,035 1,914 716 1,525 1,066 1,046 1,306

All 1,812 1,992 1,110 1,160 2,107 1,018 2,074 1,392 1,452 1,459

Table 5: Number of lines containing “critical,” “major,” or “minor” errors in the baseline translation detected by
XCOMET-XL.

MT System
Ja→En Ja→Zh En→Ja En→Zh

ASPEC WMT23 MTNT19 KFTT ASPEC ALT WMT23 MTNT19 IWSLT IWSLT
[a] [b] [c] [d] [e] [f] [g] [h] [i] [j]

NLLB [1] 0.492 0.528 0.609 0.614 0.329 0.389 0.357 0.392 0.357 0.392
JParaCrawl (small) [2] 0.476 0.489 0.591 0.682 - 0.427 0.349 0.404 0.292 -
JParaCrawl (base) [3] 0.442 0.527 0.553 0.634 - 0.354 0.346 0.353 0.296 -
JParaCrawl (big) [4] 0.518 0.527 0.523 0.741 - 0.429 0.331 0.425 0.296 -
Llama (BM25) [5] 0.582 0.545 0.481 0.663 0.386 0.581 0.400 0.453 0.373 0.448
Llama (vector) [6] 0.530 0.576 0.578 0.637 0.368 0.617 0.441 0.440 0.466 0.436

Llama-Swallow (BM25) [7] 0.762 0.617 0.682 0.753 0.534 0.356 0.428 0.381 0.465 0.493
Llama-Swallow (vector) [8] 0.703 0.638 0.646 0.682 0.519 0.428 0.409 0.395 0.433 0.418

Table 6: Pearson product-moment correlation coefficients r between the COMET gain (wmt22-comet-da, with
reference) and QE score gain (XCOMET-XL, without reference) both achieved by the proposed method. See Table 5
for the number of segments in each configuration.

E Correlation between the Estimated
Quality and COMET Score

Table 6 summarizes the segment-level correlation
coefficients between the gain of the COMET score
and the gain of the estimated quality. At a glance,
a moderate positive correlation existed for most
configurations, and one might consider that this
indicates that the estimated quality was beneficial
to the search. However, as observed in §6.2, the
estimated score does not always help the system
make the correct decision.

F Source Text Edit Rate

Figures 9, 10, and 11 show the degree of text edit-
ing performed by the word-substitution, sequence-
to-sequence, and LLM-NT methods, respectively,
measured by TER computed in the same manner as
for our method (§6.3). Compared with our method,
the word-substitution method led to a lower TER,
since it substituted only one word. The other two
non-targeted methods indiscriminately affected the
entire texts, which led to a substantially larger TER
depending mainly on the dataset: the sequence-to-
sequence method for Japanese and the LLM-NT

method for English. LLM-NT demonstrated a sat-
uration, indicating that it properly followed the
instruction for retaining semantics and grammati-
cality.

G Details of the Sequence-to-Sequence
Paraphrasing Models

Only the monolingual sequence-to-sequence pre-
editing models were trained by us for our exper-
iments. Our procedure below follows that in a
previous study (Koretaka et al., 2023).

First, we generated synthetic monolingual par-
allel data from the bilingual parallel corpora used
for retrieving translation demonstrations (§5.1.2).
We randomly sampled text pairs from each corpus,
aligning their sizes with the minimum corpus of
4.6M, and translated their non-targeted side into the
language on the other side, using M2M100-418M
(Fan et al., 2021) and beam search with a beam
size of 12. The synthetic monolingual parallel data,
9.2M text pairs for each of Japanese and English,
were composed of the pairs of the resulted trans-
lation (Ja’←{En,Zh} and En’←{Ja,Zh}) and the
corresponding reference translation in the bilingual
parallel corpus (Ja–{En,Zh} and En–{Ja,Zh}).
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Figure 9: Translation edit rate (TER) between the original source text src0 and each of its edited versions srci
generated by the Word-Sub method (the five-best outputs).
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Figure 10: Translation edit rate (TER) between the original source text src0 and each of its edited versions srci
generated by the Seq2seq-B method (the five-best outputs).

We then trained a Transformer Base model
(Vaswani et al., 2017) for each of Japanese and En-
glish, regarding the synthetic side as the source, and
using a joint vocabulary of 32k sub-words deter-
mined using SentencePiece (Kudo and Richard-

son, 2018) and Fairseq (Ott et al., 2019). We set
the training hyper-parameters to the same values as
Morishita et al. (2022), except for the number of
updates of 60k and the lack of checkpoint averag-
ing.
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Figure 11: Translation edit rate (TER) between the original source text src0 and each of its edited versions srci
generated by the LLM-NT method. Because of the iterative nature, srci+1 was always obtained from srci directly.
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