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Abstract

This paper describes our methodology and find-
ings in building Machine Translation (MT) sys-
tems for submission to the WMT 2025 Shared
Task on Low-Resource Indic Language Transla-
tion. Our primary aim was to evaluate the effec-
tiveness of a phrase-based Statistical Machine
Translation (SMT) system combined with a
less common subword segmentation strategy
for languages with very limited parallel data.
We applied multiple Byte Pair Encoding (BPE)
merge operations to the parallel corpora and
concatenated the outputs to improve vocabulary
coverage. We built systems for the English–
Nyishi, English–Khasi, and English–Assamese
language pairs. Although the approach showed
potential as a data augmentation method, its
performance in BLEU scores was not competi-
tive with other shared task systems. This paper
outlines our system architecture, data process-
ing pipeline, and evaluation results, and pro-
vides an analysis of the challenges, positioning
our work as an exploratory benchmark for fu-
ture research in this area.

1 Introduction

Machine Translation (MT) has advanced rapidly
in recent years, primarily driven by neural archi-
tectures and the availability of large-scale parallel
corpora. However, these benefits are often confined
to high-resource languages (Koehn and Knowles,
2017), leaving many languages with little or no
translation support (Gowda et al., 2021). The WMT
2025 Shared Task on Low-Resource Indic Lan-
guages Translation addresses this gap by focusing
on languages spoken in India with scarce digital
resources.

While many efforts adapt high-resource MT tech-
niques to low-resource settings, direct transfer of-
ten fails due to the data-hungry nature of neural
networks. This has led to research in areas such as
word segmentation and other preprocessing strate-
gies (Ding et al., 2019; Abid, 2020; Huck et al.,

2017; Ortega et al., 2020; Lankford et al., 2021;
Domingo et al., 2023; Lee et al., 2024) to make sys-
tems more viable under data constraints. Although
our focus here is on bilingual MT, we acknowledge
the rise of multilingual and decoder-only models.
Our goal was to investigate how far statistical mod-
els, combined with multiple BPE segmentations
(Poncelas et al., 2020), could be pushed in highly
constrained settings.

Bilingual MT systems have been successfully
developed for other under-represented languages,
such as Cantonese–Mandarin (Liu, 2022), English–
Luganda (Kimera et al., 2025), Wolof–French
(Dione et al., 2022), Bavarian–German (Her and
Kruschwitz, 2024), and English–Manipuri (Singh
et al., 2023; Singh and Singh, 2022), often with
transformer-based architectures and customised
segmentation like BPE (Li et al., 2024).

Previous work (Yadav et al., 2019; Yadav and
Shrivastava, 2021; Akhbardeh et al., 2021) has
shown that, for some low-resource Indic languages,
SMT can outperform NMT. For the WMT 2025
Shared Task (Pakray et al., 2025), we therefore
chose SMT for our systems targeting English ↔
{Assamese, Khasi, Manipuri}.

The organisers provided parallel corpora for
English–Kokborok, English–Bodo, English–
Nyishi, English–Manipuri, English–Khasi,
English–Mizo, and English–Assamese, building
on earlier iterations (Pakray et al., 2024). We
set out to determine whether a robust, traditional
method like SMT—enhanced with a multiple-BPE
data augmentation technique—could remain a
viable option in such low-resource scenarios. This
paper describes our approach and analyses the
performance of our submissions.

2 Background

Low-resource MT faces unique challenges due to
the scarcity of high-quality parallel corpora. Data
sparsity leads to out-of-vocabulary (OOV) issues
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and poor generalisation. While Neural Machine
Translation (NMT) dominates for high-resource
pairs, its high data requirements limit its applica-
bility without substantial augmentation (Sennrich
et al., 2016a) or multilingual transfer (Mahata et al.,
2023; Johnson et al., 2017).

Phrase-based SMT is often more resilient to
small data sizes. By learning from statistical align-
ments of phrase pairs, it can perform robustly with
limited resources.

For languages in the Indic family, which often
exhibit rich morphology, subword segmentation
is an effective preprocessing step (Prabhugaonkar
et al., 2014). BPE, in particular, balances word-
level and character-level representations, reduces
vocabulary size, and mitigates OOV problems. In-
spired by Poncelas et al. (2020), we extended this
idea by applying multiple BPE merge operations
to produce diverse segmentations, concatenating
them to create a richer training set.

3 Data

The shared task corpora were drawn from previous
WMT datasets and new resources (Pal et al., 2023;
Kakum et al., 2023; Pakray et al., 2024). After
preprocessing, we obtained the training statistics
shown in Table 1.

Language Pair # Training Sentences
English–Khasi 26,000
English–Mizo 50,000
English–Assamese 54,000

Table 1: Training data statistics before data augmenta-
tion.

Our preprocessing steps included:

• For Latin-script languages: tokenisation, nor-
malisation, and lowercasing using Moses
(Koehn et al., 2007).

• For others: processing with the Indic NLP
Library (Kunchukuttan, 2020).

• For each parallel corpus: training and apply-
ing BPE (Sennrich et al., 2016b) with merge
operations of 500, 1000, 2000, and 3000.

The segmented corpora from each merge set-
ting were concatenated and deduplicated (Poncelas
et al., 2020), resulting in the statistics in Table 2.

Language Pair # Training Sentences
English–Khasi 91,379
English–Mizo 186,918
English–Assamese 209,010

Table 2: Training data statistics after concatenation and
deduplication of multi-BPE segmentations.

4 System Description

We used Moses (Koehn et al., 2007) for phrase-
based SMT, with target-side KenLM language mod-
els (Heafield, 2011) trained on the corpora in Ta-
ble 2. Each system was evaluated under four infer-
ence configurations:

• 1000 BPE segmented source

• 2000 BPE segmented source

• 3000 BPE segmented source

• Combined Hypothesis, selecting the output
with the highest probability among the above.
We select translation that exhibit an average
log-likelihood of −1.0 or higher, according to
measurements taken by the fairseq-interactive
tool.

5 Results

Our systems were tested on the official WMT
2025 English–Nyishi, English–Khasi, and English–
Assamese sets. In all cases, performance ranked in
the lower tier, with BLEU scores notably behind
top-performing NMT systems that likely used ex-
ternal data or more advanced architectures. Full
results are shown in Tables 3 and 4.

6 Discussion

The modest results highlight the limitations of SMT
in this setting. Two main factors likely contributed:

1. SMT’s inability to capture long-range depen-
dencies and nuanced patterns compared to
modern neural models.

2. The data augmentation via multiple BPE seg-
mentations did not sufficiently overcome the
extreme scarcity of parallel data, particularly
for Nyishi.

Noisy and domain-specific terms in the provided
corpora may have further impacted translation qual-
ity.

https://fairseq.readthedocs.io/en/latest/getting_started.html
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To
English

Test Inferenceing
Strategy

BLEU METEOR ROUGE-
L

CHRF TER Cos
Similarity

Assamese

Combine Hypothesis 0.3331 0.0229 0.0213 17.5032 286.2066 0.0775

1000 BPE 0.3331 0.0229 0.0213 17.5032 286.2066 0.0775

2000 BPE 0.3331 0.0229 0.0213 17.5032 286.2066 0.0775

3000 BPE 0.3340 0.0230 0.0214 17.5031 286.2821 0.0775

Khasi

Combine Hypothesis 1.0536 0.0793 0.1112 19.4678 177.4341 0.2460

1000 BPE 1.0935 0.0808 0.1138 19.2604 171.4254 0.2428

2000 BPE 1.0604 0.0802 0.1111 19.4635 176.1309 0.2456

3000 BPE 1.0461 0.0806 0.1114 19.5720 179.1631 0.2474

Nyishi

Combine Hypothesis 1.2657 0.0857 0.1209 23.4376 138.2275 0.2111

1000 BPE 1.2557 0.0828 0.1191 23.2949 139.4495 0.2033

2000 BPE 1.1942 0.0808 0.1158 22.9758 145.2652 0.2052

3000 BPE 1.1885 0.0811 0.1127 23.3545 147.9239 0.2006

Table 3: Indic Language to English translation systems

English To Test Inferenceing Strategy BLEU METEOR ROUGE-L CHRF TER

Assamesse

Combine Hypothesis 2.9694 0.1126 0.0000 31.4566 107.3459

1000 BPE 2.9256 0.1089 0.0000 30.4868 104.2561

2000 BPE 3.0255 0.1137 0.0000 31.2960 107.3301

3000 BPE 3.0287 0.1145 0.0000 31.6349 108.9135

Khasi

Combine Hypothesis 4.2570 0.1922 0.2555 26.7990 96.2399

1000 BPE 4.2404 0.1885 0.2539 26.5474 94.7060

2000 BPE 4.2277 0.1933 0.2550 26.7577 97.9426

3000 BPE 4.0968 0.1938 0.2522 26.9003 100.6179

Nyishi

Combine Hypothesis 1.1870 0.0492 0.0781 20.3680 123.9258

1000 BPE 1.2280 0.0493 0.0782 20.2094 120.4597

2000 BPE 1.1843 0.0496 0.0771 20.4325 124.4046

3000 BPE 1.1730 0.0503 0.0770 20.6541 127.1327

Table 4: English to Indian Language translation systems
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7 Conclusion and Future Work

Our participation in the WMT 2025 Shared Task
was an exploratory test of a multi-BPE augmenta-
tion strategy in an SMT framework for extremely
low-resource Indic language pairs. While the
method did not yield competitive results, it pro-
vides a clear baseline for SMT in these settings and
reinforces the potential value of hybrid or neural
approaches. Future work will explore SMT–NMT
hybrids, fine-tuning large multilingual models on
limited data, and advanced augmentation methods
such as back-translation.
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