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Abstract

Low-resource translation for Indic languages
poses significant challenges due to limited par-
allel corpora and linguistic diversity. In this
work, we describe our participation in the
WMT25 shared task for four Indic languages-
Khasi, Mizo, Assamese, which is categorized
into Category 1 and Bodo in Category 2.
For our PRIMARY submission, we fine-tuned
the distilled NLLB-200(600M) model on bidi-
rectional English↔Khasi and English↔Mizo
data, and employed the IndicTrans2 model fam-
ily for Assamese and Bodo translation. Our
CONTRASTIVE submission augments train-
ing with external corpora from PMINDIA,
Google SMOL and GATITOS to further en-
rich low-resource data coverage. Both sys-
tems leverage Low-Rank Adaptation (LoRA)
within a parameter-efficient fine-tuning frame-
work, enabling lightweight adapter training
atop frozen pretrained weights. The translation
pipeline was developed using the Hugging Face
Transformers and PEFT libraries, augmented
with bespoke preprocessing modules that ap-
pend both language and domain identifiers to
each instance. We evaluated our approach on
parallel corpora spanning multiple domains: ar-
ticle based, newswire, scientific, and biblical
texts as provided by the WMT25 dataset, under
conditions of severe data scarcity. Fine-tuning
lightweight LoRA adapters on targeted parallel
corpora yields marked improvements in evalua-
tion metrics, confirming their effectiveness for
cross-domain adaptation in low-resource Indic
languages.

1 Introduction

Low-resource language translation remains one of
the most persistent challenges in machine trans-
lation (MT), particularly for linguistically diverse
regions such as India. We observed that in WMT25
the provided corpora spanned biblical, scientific,
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news, and article-based domain, introducing sig-
nificant domain shifts that demanded robust adap-
tation strategies (Pakray et al., 2025). To ad-
dress these challenges, we developed two pri-
mary systems. The first leveraged IndicTrans2,
a transformer-based multilingual model optimized
for Indic languages, and the second utilized NLLB-
200(600M), a distilled multilingual model trained
on over 200 languages. Both systems were fine-
tuned using Low-Rank Adaptation (LoRA), en-
abling efficient domain adaptation without retrain-
ing the full model. For our contrastive submission,
we augmented the training data with external cor-
pora from sources such as PMINDIA (Haddow
and Kirefu, 2020), GATITOS (Jones et al., 2023),
and Google SMOL (Caswell et al., 2025), allow-
ing us to explore the impact of data diversity on
translation quality. This paper presents our system
architecture, training methodology, and evaluation
results, with a particular focus on how domain-
specific corpora and external augmentation influ-
ence performance across four low-resource Indic
languages: Khasi, Mizo, Assamese, and Bodo. Our
approach employs parameter-efficient fine-tuning
via Low-Rank Adaptation (LoRA) on a pre-trained
MT model, enabling a detailed empirical analysis
of how large-scale architectures can be effectively
adapted for low-resource languages under severe
data constraints. The findings contribute to the
growing body of research on scalable and adapt-
able MT systems for underrepresented languages.

2 Related Work

Translation quality in low-resource scenarios has
been significantly advanced by large-scale mul-
tilingual models and lexical augmentation tech-
niques. Fan et al. (2022) introduced No Language
Left Behind (NLLB) which demonstrates effective
multilingual MT at scale using a Sparsely Gated
Mixture of Expert models trained with data that is
mined specifically for underrepresented languages.
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Their approach achieved substantial BLEU im-
provements and incorporated safety evaluations
using FLORES-200 (Fan et al., 2022). Also,
Jones et al. (2023) explored bilingual lexica as a
lightweight data augmentation method, showing
that collected lexical resources such as GATITOS
can significantly enhance performance in unsuper-
vised translation settings.

Toolkits like the HuggingFace Datasets library
(Lhoest et al., 2021) also made efforts to support
data development and reproducibility, which stan-
dardizes access to hundreds of multilingual corpora
used in MT research.

For evaluation, several automatic metrics have
been proposed to correlate better with human judg-
ments. Lin (2004) developed ROUGE, widely used
in summarization but also adopted in MT, which
computes n-gram overlap and has influenced newer
evaluation benchmarks. Banerjee and Lavie (2005)
introduced METEOR, which matches unigrams us-
ing surface forms, stems and synonyms, incorporat-
ing both precision and recall as well as word order.
Snover et al. (2006) proposed Translation Edit Rate
(TER), also called Translation Error Rate, which
measures the number of edits required to change a
system output into one of the references. Popović
(2015) proposed chrF, a character n-gram F-score
metric that outperforms word-level metrics in many
segment-level evaluations.

3 Dataset

For our primary submission, we utilized the In-
dic Machine Translation corpus from the WMT25
Shared Task. This benchmark comprises parallel
data for four low-resource Indian languages, strat-
ified into two categories based on training data
volume. Category 1 encompasses language pairs
with moderate-sized corpora, whereas Category 2
contains the severely data-starved corpora.

The language pairs are delineated as follows:
Category 1: en-as (English ↔ Assamese), en-

lus (English ↔ Mizo), en-kha (English ↔ Khasi)
Category 2: en-bodo (English ↔ Bodo)
The parallel corpora supplied by the WMT25

IndicMT shared task1 were employed for all model
development. Each language pair’s dataset was
randomly divided into training (70 %), validation
(20 %), and internal test (10 %) subsets, as de-
tailed in Table 1. In addition, the task organizers

1https://www2.statmt.org/wmt25/indic-mt-task.
html

released held-out monolingual test sets containing
1,000 sentences per translation direction for each
language pair; these sets were used exclusively for
final evaluation.

Language Total Train Valid Test
Sentences (70%) (20%) (10%)

Assamese 54,000 37,800 10,800 5,400
Khasi 26,000 18,200 5,200 2,600
Mizo 50,000 35,000 10,000 5,000
Bodo 15,215 10,651 3,043 1,521

Table 1: Summary of Parallel Training Data from the
WMT25 Indic MT Dataset.

3.1 Contrastive System Dataset
For a comparative analysis of data augmentation,
we constructed a contrastive system by supplement-
ing the WMT25 training dataset with additional
publicly available parallel corpora. Our goal was
to assess the resulting impact on translation perfor-
mance across low-resource language pairs.

We incorporated data from four primary sources:
the PMINDIA corpus (Haddow and Kirefu, 2020),
high-quality parallel corpora for multiple Indian
languages, sourced from government websites, of-
ficial publications, and other public domain mate-
rials, covering legal, administrative, and general-
purpose domains.; the GATITOS dataset (Jones
et al., 2023), which provides lexically-augmented
data for multilingual translation; the SMOL dataset
(Caswell et al., 2025), containing professionally
translated sentences for under-represented lan-
guages; and the Tatoeba corpus (Tiedemann, 2020),
a large, community-sourced collection of multilin-
gual sentence pairs.

The total volume of parallel data for each lan-
guage after augmentation is detailed in Table 2.
This table delineates the contribution of each exter-
nal corpus alongside the original WMT data.

Corpus Assamese Bodo Khasi Mizo
(asm) (brx) (kha) (lus)

WMT 54,000 15,216 26,000 50,000
GATITOS 3,975 3,994 4,000 3,998
Smol Sent 0 863 0 863
PMINDIA 9,732 0 0 0
Tatoeba 0 0 1,426 0
Total 67,707 20,073 31,426 54,861

Table 2: Parallel Corpus Statistics for the Contrastive
System, detailing the original WMT25 data and supple-
mentary corpora.

https://www2.statmt.org/wmt25/indic-mt-task.html
https://www2.statmt.org/wmt25/indic-mt-task.html
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4 Methodology

Our methodology is focused on fine-tuning state-
of-the-art, pre-trained multilingual translation mod-
els that excel in low-resource settings. We chose
NLLB-200(600M) (Fan et al., 2022) and Indic-
Trans2 (Gala et al., 2023) as our core architec-
tures. NLLB-200(600M) , developed under the
No Language Left Behind initiative, delivers ex-
tensive typological coverage and consistently high
translation quality across diverse languages (Fan
et al., 2022). IndicTrans2, by contrast, incorpo-
rates script-aware tokenization and subword seg-
mentation tailored specifically to Indian languages,
yielding superior performance on Indic↔English
pairs (Gala et al., 2023).

By fine-tuning these complementary models on
the WMT25 IndicMT parallel corpora and on the
augmented corpus for our contrastive system, we
established a strong performance baseline and sys-
tematically quantified the gains afforded by data
augmentation.

4.1 Preprocessing
We employed a three-step preprocessing pipeline
to ensure data consistency and compatibility with
our models:

1. Text Normalization: English seg-
ments were processed using the
MosesPunctNormalizer (Koehn et al.,
2007), while a custom function (preproc())
performed Unicode NFKC normalization and
non-printable character removal for Khasi
and Mizo.

2. Language Tagging: Each sentence was
prepended with a language-specific tag (e.g.,
<eng_Latn>, <kha_Latn>) to guide the mul-
tilingual model during fine-tuning.

3. Dataset Structuring: The processed sentence
pairs were structured into a Hugging Face
DatasetDict (Lhoest et al., 2021), enabling
efficient batching, shuffling, and training via
the Trainer API (Wolf et al., 2020).

4.2 System Description
4.2.1 Primary Submission
Our primary systems are based on fine-tuning
two state-of-the-art multilingual models—NLLB-
200(600M) and IndicTrans2—selected for their
complementary strengths on low-resource and
Indic-script translations.

NLLB-200(600M) for Khasi
and Mizo: We adopted the
facebook/nllb-200-distilled-600M check-
point (Fan et al., 2022) for Khasi and Mizo
tasks.

Model & Tokenizer: The standard
NLLBTokenizer handles Mizo without modi-
fication; for Khasi we registered a new language
token (<kha_Latn>) at token ID 256204 to
correctly signal the source and target language.

LoRA Fine-Tuning: We applied Low-Rank
Adaptation (LoRA) to all linear layers, updating
only adapter weights. This approach enables effi-
cient domain adaptation with fewer trainable pa-
rameters compared to full fine-tuning. Training
ran for 30 epochs under Adafactor (learning rate
1×10−5, batch size 32) with early stopping after 10
evaluations. Evaluation metrics were BLEU, ME-
TEOR, ROUGE-L, chrF and TER. Detailed LoRA
hyperparameters appear in Table 4.

IndicTrans2 for Bodo and Assamese:
For Bodo and Assamese, we used the
ai4bharat/indictrans2-indic-en-dist-200M
model (Gala et al., 2023), which employs an
IndicProcessor to prepend language tokens such
as <brx_Deva> and <asm_Beng>.

LoRA Fine-Tuning: We mirrored the NLLB-
200(600M) setup (Adafactor, 1 × 10−5 learning
rate, 32-sentence batch, 30 epochs, early stopping)
and applied identical LoRA settings (see Table 4).
The resulting adapter checkpoints are saved as
lightweight artifacts.

4.2.2 Contrastive Submission
To quantify the effect of data augmentation, we re-
trained the same base models on extended parallel
corpora. The tokenization and training pipeline re-
mained identical, with two key LoRA adjustments
to accommodate the increased data volume.

Model Setup: We reused NLLB-200(600M) for
Khasi/Mizo (Fan et al., 2022) and IndicTrans2 for
Bodo/Assamese (Gala et al., 2023). All supplemen-
tary bilingual data underwent the preprocessing and
language-tagging workflow described in Section 3.

LoRA Adaptation: We increased the LoRA rank
to 64 and α to 128 to provide greater adaptation
capacity for the contrastive data, while retaining
LoRA’s parameter efficiency. Training was reduced
to 15 epochs (Adafactor, 1 × 10−5 learning rate,
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Direction BLEU METEOR ROUGE-L chrF TER

P C P C P C P C P C

as-en 21.40 21.75 0.695 0.690 0.701 0.703 66.14 65.77 54.90 53.77
en-as 17.54 17.64 0.422 0.422 0.007 0.007 57.75 57.71 71.17 74.81
kha-en 4.31 5.52 0.239 0.289 0.293 0.349 31.33 34.85 131.86 113.30
en-kha 14.20 20.08 0.370 0.452 0.431 0.534 39.95 47.36 87.50 59.98
lus-en 10.38 11.81 0.537 0.544 0.576 0.581 55.09 55.17 86.84 74.39
en-lus 14.26 14.72 0.415 0.407 0.515 0.506 48.51 48.55 72.22 69.49
bodo-en 21.68 22.11 0.627 0.629 0.679 0.688 62.95 63.55 54.29 52.84
en-bodo 24.45 24.97 0.513 0.519 0.168 0.169 67.71 67.81 51.84 51.50

Table 3: Results for all language pairs: Primary Submission Results (P) vs Contrastive Submission Results (C).

batch size 32), as detailed in Table 4. Performance
comparisons against the primary systems isolate
gains attributable to data augmentation.

Parameter Primary Contrastive
Submission Submission

Optimizer Adafactor
Learning rate 1× 10−5

Epochs 30 15
Precision bf16
PEFT type LoRA
Rank (r) 16 64
Alpha (α) 32 128
Dropout 0.05
Target modules all linear layers

Table 4: LoRA Configuration for Primary and Con-
trastive Submissions.

5 Results

We evaluate our system submissions on the WMT
IndicMT shared task for four low-resource Indian
languages: Assamese, Khasi, Mizo, and Bodo. Ta-
bles 3 presents the comprehensive results for our
primary and contrastive submissions respectively
across all bidirectional translation pairs. All sys-
tems are evaluated using standard automatic met-
rics including BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE-L (Lin,
2004), chrF (Popović, 2015), and TER (Snover
et al., 2006).

The results demonstrate that our contrastive sub-
missions generally achieved better or comparable
performance across most language pairs and met-
rics compared to the primary submissions.

6 Conclusion

In this paper, we described the DoDS-IITPKD
submissions to the WMT25 Low-Resource Indic
Language Translation Task. Our systems were
designed for multiple Indic-English and English-
Indic translation directions, focusing particularly
on Category-I languages of NorthEast India. We
explored a combination of pre-trained multilin-
gual models (IndicTrans, NLLB-200(600M)),fine-
tuning strategies and LoRA-based efficient adap-
tation. Future work will focus on more domain-
robust adaptation and incorporating quality estima-
tion for improved translation reliability.
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