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Abstract

We present the results of our constrained sub-
mission to the WMT 2024 shared task, which
focuses on translating from Spanish into two
low-resource languages of Spain: Aranese
(spa-arn) and Aragonese (spa-arg). Our sys-
tem integrates real and synthetic data generated
by large language models (e.g., BLOOMZ) and
rule-based Apertium translation systems. Built
upon the pre-trained NLLB system, our transla-
tion model utilizes a multistage approach, pro-
gressively refining the initial model through
the sequential use of different datasets, starting
with large-scale synthetic or crawled data and
advancing to smaller, high-quality parallel cor-
pora. This approach resulted in BLEU scores
of 30.1 for Spanish to Aranese and 61.9 for
Spanish to Aragonese.

1 Introduction

This work presents the results of our
constrained submission for the Translation
into Low-Resource Languages of Spain shared task
at WMT24.1 The task involves translating from
Spanish into two low-resource languages spoken in
the northeast of the Iberian Peninsula: Aragonese
(spa-arg) and Aranese (spa-arn).

Despite the existence of monolingual corpora
for these languages, parallel data from Spanish to
Aragonese is extremely scarce, amounting to only
about 60, 000 parallel sentences in OPUS (Tiede-
mann, 2016). In the case of Aranese, fewer than
a thousand parallel sentences are available (FLO-
RES+, Guzmán et al., 2019). In addition to that,
these Romance languages are notable for their
graphemic instability. Although proposals for or-
thographic standardization (Estudio de Filología
Aragonesa, 2010) and official recognition (Bo-
letín Oficial del Estado, 2006) have been intro-

1The source code for the experiments discussed in this ar-
ticle is available at https://github.com/jonathanmutal/
WMT-24-Submission.

duced, the absence of a commonly accepted writ-
ing system has hindered the development of ma-
chine translation (MT) systems into Aragonese and
Aranese (Forcada, 2020).

A few previous works have explored MT for
these language combinations. For instance, Aper-
tium MT systems (Forcada et al., 2011) provided
translations for the above-mentioned pairs using a
rule-based approach, achieving better results than
neural-based MT systems (Oliver, 2020). Simi-
larly, Cortés et al. (2012) complemented Apertium
with an additional orthographic module, and pro-
posed a bidirectional spa-arg MT system. More
recently, a multilingual MT model (No Language
Left Behind, NLLB Team et al., 2022) included
under-resourced Iberian languages like Asturian in
its training set. However, it did not cover Aranese
or Aragonese.

Given the characteristics of this low-resource
scenario, we addressed the translation from Span-
ish into Aragonese and Aranese using a multilin-
gual multistage approach. The multilingual aspect
involved leveraging data from linguistically related
languages (such as Occitan for Aranese transla-
tion), and employing multilingual pre-trained mod-
els (specifically, NLLB2) to facilitate generaliza-
tion across different languages. The multistage
approach was designed to consecutively enhance
translation performance in the target languages us-
ing increasingly specific fine-tuning data sets.

Additionally, we applied data augmentation tech-
niques to increase the volume of relevant data in our
training set. This involved: i) resorting to LLMs
within the constraint of one thousand million pa-
rameters (in particular, BLOOMZ3) to synthetically
create more data in the target languages, and ii) pro-
ducing aligned data through Apertium systems on

2Particularly, the following model: https://
huggingface.co/facebook/nllb-200-distilled-600M.

3Specifically: https://huggingface.co/bigscience/
bloomz-560m.

https://github.com/jonathanmutal/WMT-24-Submission
https://github.com/jonathanmutal/WMT-24-Submission
https://huggingface.co/facebook/nllb-200-distilled-600M
https://huggingface.co/facebook/nllb-200-distilled-600M
https://huggingface.co/bigscience/bloomz-560m
https://huggingface.co/bigscience/bloomz-560m
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the basis of real and synthetic monolingual data
from both sides of the languages pairs.

The structure of this paper is as follows: Sec-
tion 2 describes the methods employed to gather
parallel and monolingual data for our experiments.
Section 3 introduces the multistage fine-tuning ap-
proach. In Section 4, we discuss the experiments
conducted on both language combinations and the
results obtained. Lastly, Section 5 summarizes our
findings and suggests directions for future research.

2 Data

To train our MT spa-arn and spa-arg models, we
first compiled parallel data from OPUS and FLO-
RES+ (FLORES+DEV) bilingual corpora. We then
compiled monolingual data from two sources: i) we
sub-sampled 19 million sentences from Wikimedia
and NLLB datasets available in OPUS for Spanish,
and ii) we collected all monolingual corpora for
Aragonese, Aranese and Occitan from OPUS and
PILAR (Galiano-Jiménez et al., 2024) when avail-
able. Table 1 details the number of segments in the
bilingual corpora, and Table 2 reports the segments
counts for each monolingual corpus. The notation
“k” denotes thousands, and “M” signifies millions.
A ✗ indicates the absence of available data.

Corpus spa-arn spa-oci spa-arg

OPUS ✗ 1.11M∗ 60k
FLORES+DEV 997 997∗∗ 997

Table 1: Number of parallel segments for the avail-
able bilingual dataset. ∗CCMATRIX was not utilized.
∗∗These sentences were not used in any experiment.

Corpus spa arn oci arg

OPUS 19M ✗ 739k 213k
PILAR ✗ 322k∗ ✗ 84k

Table 2: Number of monolingual segments for each
available dataset. ∗Monolingual paragraphs were not
utilized.

2.1 Synthetic Monolingual Data

We generated synthetic monolingual data in
Aranese using BLOOMZ (Muennighoff et al.,
2023). To do so, we fine-tuned BLOOMZ with
the monolingual data (i.e., PILAR) using a causal
language modeling objective, which involves pre-
dicting the next token in a sequence. We used

a learning rate of 5 × 10−5 with an early stop-
ping mechanism based on accuracy with a patient
value of 5. As for the validation data, we randomly
picked 1, 000 segments extracted from the same
data distribution.

To generate new sentences in the target lan-
guage, we took the beginnings of sentences in
FLORES+DEV. Then, the model completed seg-
ments from varying numbers of input words (rang-
ing from 1 to 60 words) and generated up to a maxi-
mum of 65 tokens. We produced 59, 820 (997×60)
sentences in Aranese using multinomial sampling.
All other generation hyperparameters were set to
their default values.4

2.2 Synthetic Parallel Data
Using the monolingual and synthetic data described
above, we produced parallel data through Apertium
systems (see Table 3). The following strategies
were employed to synthetically create parallel sets:

• Forward translation (Burlot and Yvon,
2018). We generated synthetic Aranese, Occi-
tan and Aragonese from monolingual Spanish
(see Table 2).

• Backtranslation (Sennrich et al., 2016). We
backtranslated the segments from monolin-
gual Occitan, Aranese, and Aragonese. We
also backtranslated synthetic segments in
Aranese produced by BLOOMZ (see Sec-
tion 2.1).

Strategy Corpus spa-arn spa-oci spa-arg

FT OPUS 20M 20M 20M

BT
OPUS ✗ 1.8M 273k
PILAR 322k ✗ ✗

BLOOMZ 59k ✗ ✗

Total 20.3M 21.8M 20.2M

Table 3: Training data synthetically generated using
forward translation (FT) and backtranslation (BT).

3 Approach

Our approach, termed “multistage fine-tuning” in-
volves sequentially refining a model using multiple
datasets arranged in a specific order – a method
proven to improve performance in machine transla-
tion for low-resource language pairs (Dabre et al.,
2019).

4See documentation: https://huggingface.co/docs/
transformers/en/main_classes/text_generation.

https://huggingface.co/docs/transformers/en/main_classes/text_generation
https://huggingface.co/docs/transformers/en/main_classes/text_generation
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System Stage Data BLEU↑ ChrF↑ TER↓
Apertium - - 28.8 49.4 72.3
MarianNMT 1 OPUS+PILAR (38M) 25.0 47.1 76.4
Helsinki-NLP 1 OPUS+PILAR (38M) 22.3 45.6 81.9
NLLB 1 OPUS+PILAR (38M) 29.0 49.4 72.3
NLLB 2.i PILAR 28.2 48.8 73.0
NLLB 2.ii PILAR+BLOOMZ 28.9 49.2 72.5
NLLB 3.i FLORES+DEV

∗30.0 ∗49.7 ∗71.8
NLLB 3.ii FLORES+DEV

∗30.1 ∗49.8 ∗71.5

Table 4: BLEU, ChrF and TER calculated on the test data for spa-arn. Scores with ∗ are significantly better than
the baseline Apertium with p < 0.01, calculated using paired approximate randomization with 10, 000 trials.

In this work, the models were initially trained
using large-scale synthetic or crawled data aiming
to match or surpass the performance of the open-
source Apertium MT systems. Following this, the
models underwent further fine-tuning with smaller,
high-quality parallel corpora to improve their per-
formance.

Performance comparisons for the initial models
were conducted among three systems: i) a model
built from scratch using MarianNMT (Junczys-
Dowmunt et al., 2018); ii) a fine-tuned Helsinki-
NLP model with ≈72M parameters; and iii) a fine-
tuned large language model, NLLB, trained on 200
different languages with a larger number of param-
eters (600M). This enabled us to identify the best
performing model for the first stage.

4 Experiments and Results

All our systems are Encoder-Decoder models based
on the Transformer architecture (Vaswani et al.,
2017). The models were trained until convergence,
with training progress monitored using BLEU score
each 5, 000 steps and an early stopping patience
value of 10 using FLORES+DEV as validation data.
The details of the training procedure and the results
obtained for validation are detailed in Appendix A
and B.

In the following sections, we describe the evalu-
ation setup as well as the experiments and results
obtained for each language pair.

4.1 Evaluation Setup

We evaluated our models using the FLORES+ test
data (1, 012 sentences). We calculated accuracy-
based metrics BLEU (Papineni et al., 2002) and
ChrF (Popović, 2015), and also computed an error-
based metric, i.e., Translation Error Rate (TER,
Snover et al., 2006). All metrics were calculated

using the Sacrebleu implementation (Post, 2018).5

We used paired approximate randomization with
10, 000 trials to calculate the level of significance
of the results.

We compared the performance of our models
with Apertium MT systems, which are strong base-
lines for these language pairs.

4.2 Spanish-Aranese

For this specific language pair, we had almost no
parallel sentences, but we did have a larger corpus
of parallel sentences from a linguistically close lan-
guage, Occitan (see Tables 1 and 2). To leverage
the non-negligible quantity of data in this language,
we built an MT model using all available data in
Occitan and Aranese. In previous experiments,
we observed that fine-tuning NLLB with multi-
lingual data (i.e., Spanish-Aranese and Spanish-
Occitan) outperformed its bilingual version (i.e.,
Spanish-Aranese). We also observed that using
special tokens to differentiate the two languages is
beneficial, and thus used them whenever possible.
Appendix A.1 and A.2 show the results of these
experiments.

Consequently, in the first stage, the models lever-
aged all available multilingual data from the OPUS
and PILAR (including also synthetic data pro-
duced by forward and backtranslation), comprising
roughly 42M sentences in Occitan and Aranese.
We excluded sentences longer than 100 tokens, re-
sulting in a total of 38M segments. We deliberately
omitted synthetic data from BLOOMZ and the val-
idation set to mitigate the risk of overfitting and
ensure generalization in the first stage.

In the second stage, the NLLB model, identified

5The signatures are:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no
nrefs:1|case:lc|tok:tercom|norm:no|punct:yes|asian:no.
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System Stage Data BLEU↑ ChrF↑ TER↓
Apertium - - 61.1 79.3 27.2
MarianNMT 1 OPUS (15M) 58.2 77.8 29.9
Helsinki-NLP 1 OPUS (15M) 57.5 77.2 30.5
NLLB 1 OPUS (15M) ∗60.5 ∗79.0 ∗27.7
NLLB-Post-Edition 2 FLORES+DEV 61.0 ∗78.9 27.2
NLLB-Translation 2 FLORES+DEV

∗61.9 79.5 ∗26.8

Table 5: BLEU, ChrF and TER calculated on the test data for spa-arg. Scores with ∗ are significantly better or
worse than the baseline Apertium with p < 0.01, calculated using paired approximate randomization with 10, 000
trials.

as the most performing from the first stage, was
fine-tuned using two different data combinations:
PILAR data (2.i), and a combination of PILAR
and synthetic Aranese data from BLOOMZ (2.ii).
To mitigate the risk of overfitting in 2.ii, we fine-
tuned the model using a fixed number of steps to
reach a slightly higher validation BLEU score than
the model trained in 2.i. During the third and fi-
nal stage, the two models from the previous stage
underwent 7, 500 additional training steps on the
FLORES+DEV (3.i and 3.ii).

Results Results from the first stage showed
that NLLB slightly outperformed the Apertium
spa-arn system by 0.2 BLEU points, although
this improvement was not statistically significant.
MarianNMT and Helsinki-NLP performed worse
than Apertium, which appears to agree to the find-
ings in Oliver (2020). Interestingly, MarianNMT
outperformed Helsinki-NLP, which might indicate
that knowledge acquired during pre-training does
not help to the task at hand. The underlying reasons
for this discrepancy should be explored in future
research.

The most performing model, NLLB (stage 3.ii),
which was trained through a three-stage process,
surpassed all previous models, improving the Aper-
tium systems by 1.3 BLEU points and 0.4 ChrF
points, and reduced the TER by 0.8 points.

The results indicate that the multistage approach
enhance model performance. They also under-
score the importance of a high-capacity model pre-
trained on a diverse set of languages to improve
translation from Spanish to Aranese. Additionally,
the findings suggest that integrating synthetic data
generated by BLOOMZ is beneficial in the third
stage of fine-tuning (NLLB 3.i vs. NLLB 3.ii).6

6We also fine-tuned the resulting NLLB model from the
first stage with FLORES+DEV data using 7, 500 steps. It un-
derperformed the systems from the third stage.

4.3 Spanish-Aragonese

The model training for spa-arg was conducted in
two stages. In the first stage, we used all OPUS-
based synthetic data from Spanish to Aragonese
to fine-tune NLLB.7 This initial corpus amounted
to roughly 20M parallel sentences, but we later
filtered out the source or target sentences exceeding
100 tokens, which resulted in 15M pairs. With this
set, we achieved comparable performance to the
Apertium MT system in the validation data.

In the second stage, the model was fine-tuned
with a lower learning rate, and utilized the
FLORES+DEV in two different approaches:

• Translation, using as source the original sen-
tences in Spanish.

• Post-Edition (PE), using the Aragonese gen-
erated by the Apertium rule-based system
as the source to train a post-edition model
(apertium_arg-arg).

Results The experiments indicate that the perfor-
mance is superior for translation tasks compared
to post-edition tasks. Specifically, our optimal sys-
tem, NLLB-Translation, surpassed the Apertium
baseline by 0.8 BLEU points and reduced the trans-
lation error rate by 0.4 points.

Regarding the PE model, we assumed that a sys-
tem trained using apertium_arg-arg could only
help correct the mistakes made by such rule-based
approach and thus improve its performance. Sur-
prisingly, the resulting model (NLLB-Post-Edition)
did not outperform the rule-based system, and in-
stead degraded its results (see Table 5). One pos-
sible explanation for this is that the NLLB model
from stage 1 was trained on spa-arg translation

7In previous experiments, we observed that PILAR was
not helpful for the spa-arg task, so we decided to exclude it
from the training set in our final models.
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data rather than post-edition data. Further experi-
ments need to be conducted in order to better un-
derstand the behavior of the PE model.

On another note, the results obtained for the
fine-tuned Helsinki-NLP model revealed that the
knowledge gained during pre-training does not ap-
pear to improve the results on the task. As can be
observed, the model trained from scratch (Mari-
anNMT) slightly outperforms the small-scale fine-
tuned one (Helsinki-NLP), verified by the paired
bootstrap statistical test.

5 Conclusions

Our experiments demonstrate the potential of com-
bining synthetic data with multilingual pre-trained
models to improve translation from Spanish into
Iberian low-resource languages like Aranese and
Aragonese. By leveraging data from linguisti-
cally related languages and employing a multistage
approach, the spa-arn model achieved a BLEU
score of 30.1, while the spa-arg model (NLLB-
Translation) achieved 61.9 BLEU points. Our find-
ings also indicate that the NLLB model, which
benefited from a large number of pre-trained lan-
guages and high model capacity, delivered the best
performances.

While these results are promising, we have iden-
tified several avenues for future research. One key
area is to explore the impact of the ratio of real
vs. synthetic data for training, as it can help eval-
uate how changes in data composition influence
automatic metrics. Additionally, we plan to investi-
gate the integration of external resources, such as
dictionaries (Institut d’Estudis Aranesi, 2019) and
orthographic standards (Academia Aragonesa de
la Lengua, 2023), to determine whether these can
further enhance the performance of our models.
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A Training Setup NLLB and
Helsinki-NLP

We employed the Adam optimizer with a batch size
of 16. We used 50 warm-up steps, and the number
of beams was set to 5. The maximum sequence
length was set to 100, and the remaining hyper-
parameters were left unchanged8, except for the
learning rates which are reported in the following
sections. All experiments were conducted using
the Transformers library (Wolf et al., 2020) and the
University of Geneva HPC clusters, Baobab and
Yggdrasil. We used a fixed seed (111) for repro-
ducibility purposes.

A.1 Helsinki-NLP Results
Given the absence of Aragonese or Aranese as tar-
gets in any of the existing OPUS-based Helsinki-
NLP MT models, we decided to fine-tune them
using different target languages. More specifically,
our goal was to determine which of the available
Romance languages (namely, Galician, Catalan,
French, Italian and Romanian) would be most rele-
vant for the spa-arg and spa-arn tasks.

After conducting an initial round of experiments,
we observed that a geographically close language,
Italian (i.e., Helsinki-NLP/opus-mt-es-it),
most aided the translation into Aragonese on
the validation set. Similarly, Catalan (i.e.,
Helsinki-NLP/opus-mt-es-ca) proved to be
the most helpful target language for Aranese
translation. For this language combination, we also
conducted experiments to evaluate the potential
gain from the use of two dedicated special tokens
for Aranese and Occitan. Specifically, we used
<arn> for Aranese and <ca> for Occitan.

LR BLEU ChrF
1× 10−5 59.1 78.6
2× 10−5 61.9 80.1
3× 10−5 62.1 80.3
4× 10−5 62.1 80.3
5× 10−5 62.2 80.3

Table 6: Results of Helsinki-NLP spa-arg models on
validation data with different learning rates.

Once we selected the most relevant model for
each language pair, we used different learning rates
to fine-tune them for our task at hand. Table 6
reports the BLEU and ChrF results for spa-arg

8Refer to: https://huggingface.co/docs/autotrain/
en/seq2seq_params.

translation. Table 7 shows the results for the two
versions of our spa-arn models: one that uses a
single special token (<ca>) and another one that
distinguishes between the two languages with dis-
tinct special tokens (<ca>|<arn>). All experiments
were conducted using the Trainer class.9

LR BLEU ChrF

Helsinki-NLP<ca>

1× 10−5 26.0 52.7
2× 10−5 26.5 53.2
3× 10−5 24.8 52.2
4× 10−5 25.8 52.8

Helsinki-NLP<ca>|<arn>

1× 10−5 29.7 54.9
2× 10−5 28.6 54.3
3× 10−5 28.8 54.2
4× 10−5 29.0 54.9

Table 7: Results of Helsinki-NLP spa-arn models on
validation data with different learning rates and different
special token configurations.

A.2 NLLB Results
To generate Aranese, we used the Occitan spe-
cial token (oci_Latn) in the target, which is pre-
sumably the closest language to Aranese covered
by NLLB. Similarly to the Helsinki-NLP models,
we used the Italian special token (ita_Latn) for
Aragonese.

LR BLEU ChrF

NLLB-Bi<oci>

9× 10−6 37.7 59.9
1× 10−5 37.7 59.9
3× 10−5 37.6 59.8

NLLB-Multi<oci>

9× 10−6 29.5 55.0
1× 10−5 28.3 54.3
3× 10−5 26.5 53.2

NLLB-Multi<oci>|<cat>

9× 10−6 37.8 60.0
1× 10−5 38.1 60.1
3× 10−5 37.9 60.0

Table 8: Results of NLLB spa-arn bilingual (NLLB-
Bi<oci>) and multilingual models (NLLB-Multi<oci> and
NLLB-Multi<oci>|<cat>) on validation data with different
learning rates and special token configurations.

For Aranese translation, we carried out exper-
iments to evaluate the gain of using a dedicated
special token for Aranese and Occitan. In partic-
ular, we compared the performance of a multilin-
gual model trained with Aranese and Occitan us-
ing the same token (oci_Latn), NLLB-Multi<oci>,
and another model using two special tokens: one
for Aranese (oci_Latn) and a different one for

9Refer to: https://huggingface.co/docs/
transformers/main_classes/trainer.

https://huggingface.co/docs/autotrain/en/seq2seq_params
https://huggingface.co/docs/autotrain/en/seq2seq_params
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer


870

Occitan (cat_Latn), NLLB-Multi<oci>|<cat>. We
also assessed the performance of a bilingual model
trained only with Spanish-Aranese data for com-
parison purposes (NLLB-Bi<oci>). Table 8 shows
the results on the validation data for the three ap-
proaches, indicating that the use of special tokens
to differentiate the language is beneficial, and so is
including Occitan in the training set.

Data PILAR PILAR+BLOOMZ
LR BLEU ChrF BLEU ChrF
1× 10−8 35.2 57.5 38.1 60.1
5× 10−8 36.0 58.4 38.0 60.0
1× 10−6 37.7 59.9 39.2 60.5
9× 10−6 37.4 59.6 39.9 60.9

Table 9: Results of NLLB on stage two with PILAR
and BLOOMZ on validation data with different learning
rates.

Table 9 shows the results of NLLB on stage
two and Table 10 shows the results of NLLB on
spa-arg.

LR BLEU ChrF
5× 10−7 64.2 81.4
1× 10−6 63.6 81.1
3× 10−6 65.2 81.9
9× 10−6 65.2 81.9
1× 10−5 65.4 82.0
3× 10−5 65.3 81.9

Table 10: Results of NLLB-Baseline spa-arg on vali-
dation data with different learning rates.

B MarianNMT Setup and Results

LR BLEU ChrF
3× 10−5 26.6 53.2
5× 10−5 29.6 54.9
3.5× 10−4 30.5 55.5
3× 10−3 n.a.n n.a.n

Table 11: Results of MarianNMT spa-arn models on
validation data with different learning rates.

We used the default hyperparameters from the
Marian toolkit (Junczys-Dowmunt et al., 2018) to
train the models.10 We conducted all experiments
employing three random seeds and averaging the
results measured by the automatic metrics. This

10Refer to: https://marian-nmt.github.io/docs/
cmd/marian/.

LR BLEU ChrF
3× 10−5 55.7 78.6
5× 10−5 53.3 77.7
3.5× 10−4 50.9 76.8
3× 10−3 n.a.n n.a.n

Table 12: Results of MarianNMT spa-arg models on
validation data with different learning rates.

approach is intended to reduce the variability of
results inherent to individual models randomly ini-
tialized.

Tables 11 and 12 present the results for spa-arn
and spa-arg across different learning rates. The
notation “n.a.n” indicates that the model diverged
at that particular learning rate.

https://marian-nmt.github.io/docs/cmd/marian/
https://marian-nmt.github.io/docs/cmd/marian/

