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Abstract

This paper illustrates the submission system of
the IOL Research team for the WMT24 General
Machine Translation shared task. We submitted
translations for all translation directions in the
general machine translation task. According
to the official track categorization, our system
qualifies as an open system due to the utiliza-
tion of open-source resources in developing our
machine translation model. With the growing
prevalence of large language models (LLMs) as
a conventional approach for managing diverse
NLP tasks, we have developed our machine
translation system by leveraging the capabili-
ties of LLMs. Overall, we first performed con-
tinued pretraining using the open-source LLMs
with tens of billions of parameters to enhance
the model’s multilingual capabilities. Subse-
quently, we employed open-source Large Lan-
guage Models, equipped with hundreds of bil-
lions of parameters, to generate synthetic data.
This data was then blended with a modest quan-
tity of additional open-source data for precise
supervised fine-tuning. In the final stage, we
also used ensemble learning to improve trans-
lation quality. Based on the official automated
evaluation metrics, our system excelled by se-
curing the top position in 8 out of the total 11
translation directions, spanning both open and
constrained system categories.

1 Introduction

In the current year’s WMT General Machine Trans-
lation shared task, our team, IOL Research, took
part in all 11 translation tasks, which involved trans-
lating text between various language pairs such as
Czech to Ukrainian (cs->uk), Japanese to Chinese
(ja->zh), English to Chinese (en->zh), English to
Czech (en->cs), English to German (en->de), En-
glish to Hindi (en->hi), English to Icelandic (en-
>is), English to Japanese (en->ja), English to Rus-
sian (en->ru), English to Spanish (en->es), and
English to Ukrainian (en->uk). One notable dif-
ference in this year’s task compared to previous

years is that participants were required to translate
paragraph-level texts, with one paragraph equating
to one line. This change has significantly increased
the length of the text to be translated. While tradi-
tional neural machine translation systems (Vaswani
et al., 2017) based on encoder-decoder structures
may struggle with processing long texts due to the
lack of enough document parallel data. However,
the large language models (LLMs) do not neces-
sitate a large amount of lengthy text data for fine-
tuning, making them more effective in handling
long texts. As a result, we meticulously trained
an LLM with 20 billion parameters to successfully
address all translation tasks in the competition.

Our main strategy is to explore using LLMs
to build machine translation systems. This in-
cludes fine-tuning the translation task on founda-
tional LLMs and leveraging advanced open-source
instruction-tuned LLMs to generate high-quality
translation data for further enhancement. Before
supervised fine-tuning, we also performed contin-
ued pretraining, which has been proven to be very
beneficial for translation tasks (Xu et al., 2023),
because many open-source LLMs such as LLaMA
(Touvron et al., 2023) are usually pretrained on
English monolingual data, lacking the necessary
knowledge of other languages required for trans-
lation tasks. Moreover, we experimented with en-
semble learning, a technique known to be effec-
tive for neural machine translation models. We
discovered that it provided some degree of assis-
tance for machine translation tasks based on LLMs.
In the end, our billion-parameter machine transla-
tion system achieved comparable performance to
hundred billion parameter LLMs in high-resource
languages and even outperformed them in certain
low-resource languages.

The subsequent paper is designed as follows. We
introduce the data source and processing strategy
in Section 2; Section 3 describes the details of our
training procedure; Section 4 presents the experi-
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mental settings and results.

2 System Overview

2.1 Model Architecture
We selected the Qwen1.5 model (Bai et al., 2023)
as our foundational model because of its outstand-
ing performance and considerable multilingual ca-
pabilities. Specifically, we utilized the Qwen1.5-
14B1 as our starting point, which has 40 layers
and 14 billion parameters. To enhance the model’s
capacity within our hardware constraints, we con-
catenated the first 32 layers with the last 32 layers,
resulting in duplication of the middle 24 layers, fol-
lowing the approach used in SOLAR (Kim et al.,
2023). This fusion led to a scaled-up model with
64 layers and 21 billion parameters. Since this ap-
proach alters the structure of the pretrained model,
continual pretraining becomes a necessary step to
recover its performance.

2.2 Continual Pretraining
Continual pretraining is an effective method to
enhance the knowledge embedded within LLMs.
This method has been extensively utilized to adapt
LLMs from English to various other languages, as
well as to augment the domain-specific knowledge
inherent in these models. In the context of using
LLMs for translation tasks, it has been substanti-
ated that the continuous pretraining of LLMs with
multilingual monolingual data, encompassing lan-
guages involved in all the translation directions,
is crucial (Xu et al., 2023). This year’s WMT24
general machine translation task includes 11 trans-
lation directions, involving 10 distinct languages.
Therefore, our continued pretraining is carried out
on monolingual data in these 10 languages.

We sampled the required multilingual mono-
lingual data from the mC4 (Raffel et al., 2019)
and OSCAR (Jansen et al., 2022) datasets, then
proceeded to refine the chosen data. For refine-
ment processes, we employed fastText (Joulin et al.,
2017) for language identification, the minLSH al-
gorithm for document deduplication, and KenLM
(Heafield, 2011) tool for filtering the documents
with high perplexity. Many studies (Lin et al.,
2020; Yang et al., 2021) have shown that inte-
grating bilingual data with monolingual data in
the pretraining stage can help the model achieve
better cross-lingual proficiency. Therefore, we
also incorporated a portion of the CC-Aligned

1https://huggingface.co/Qwen/Qwen1.5-14B

parallel data (El-Kishky et al., 2019) into our
continuous pretraining stage. This data includes
language pairs such as English-Czech, English-
Ukrainian, English-Japanese, English-Chinese,
English-German, English-Hindi, English-Icelandic,
English-Russian, and English-Spanish. Specifi-
cally, we randomly swapped the order of the two
articles in the bilingual document, and then merged
them into a new document as the pretraining docu-
ment. The distribution of the number of documents
in all languages in the pretraining dataset is shown
in Table 1.

Language Rate(%)
en 21.99
ja 15.02
de 12.48
cs 11.60
es 10.35
zh 9.32
uk 7.98
ru 7.2
hi 3.53
is 0.47

Table 1: The distribution of the number of documents
in all languages in the pretraining dataset.

2.3 Supervised Fine-tuning

Through supervised Fine-tuning, we can unlock
the capabilities of LLMs using only a minimal
amount of aligned data. Many fine-tuning LLMs
experiences (Zhou et al., 2024; Xia et al., 2024)
have demonstrated that the quality and diversity
of fine-tuning data are far more important than its
quantity. In the context of translation tasks, high-
quality parallel data is the ideal fine-tuning data
for LLMs. However, obtaining such high-quality
parallel data is challenging. Usually, we need to in-
vest significant effort and undergo numerous steps
to clean publicly available parallel data, aiming to
achieve high-quality data. However, this process
does not always guarantee the quality of filtered
data due to its inherent complexity. On the other
hand, start-of-the-art machine translation systems
have shown competitive performance comparable
to human translators. Consequently, we opted to
employ LLMs to generate parallel data as the su-
pervised fine-tuning data.

We used the c4ai-command-r-plus2 and
2https://huggingface.co/CohereForAI/c4ai-command-r-
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Qwen1.5-110B-Chat3, these two instruction
fine-tuned models, to generate synthetic parallel
data for all languages, with the exception of
Icelandic. Specifically, when the task requires
generating Chinese content, our go-to model is
the Qwen1.5-110B-Chat. However, for English
content generation, we make a random selection
between the Qwen1.5-110B-Chat and c4ai-
command-r-plus models. For all other scenarios,
we consistently utilize the c4ai-command-r-plus
model. The selection of models in different
languages is based on our evaluation of these
two models in translation tasks. Please refer to
Table 3 for specific comparison. Considering the
lack of proficiency of both c4ai-command-r-plus
and Qwen1.5-110B-Chat in generating Icelandic
content, we adopted an alternative strategy. We
leveraged our supervised fine-tuning model, which
has been fine-tuned on synthetic data of all other
languages, to produce the synthetic data for
Icelandic. Therefore, our model only utilized
Icelandic monolingual data for pre-training,
and the Icelandic bilingual synthesis data was
generated by unsupervised method.

We have tried two synthetic data generation
methods commonly used in traditional neural ma-
chine translation systems, forward translation (Kim
and Rush, 2016) and back translation (Sennrich
et al., 2016). Forward translation refers to using
the established translation model to translate real
source language sentences into target language sen-
tences, and then combining the translated target
language sentences with the real source language
sentences to form synthetic parallel sentence pairs.
Back translation refers to translating real target
language sentences back into the source language
using another established reverse translation model,
and then combining the real target language sen-
tences with the translated source language sen-
tences to form synthetic parallel sentence pairs.
In the process of generating back translation data
based on real target language data, we found that
the real target language data has many problems
such as incoherence, fluency deficits, and even
grammatical errors. To address these problems, we
utilized automatic post-editing technology. This
approach involves taking the translated source lan-
guage sentences and the real target language sen-
tences as inputs, and subsequently producing su-

plus
3https://huggingface.co/Qwen/Qwen1.5-110B-Chat

perior quality target language sentences. These
improved sentences are then used to replace the
real target language sentences in the back transla-
tion synthetic data. Lastly, we also utilized LLMs
to filter all the generated synthetic data, including
both forward and back translation data, to ensure
higher quality fine-tuning data. All the prompts
we use to generate synthetic data are shown in the
table 2. For each language pair, after filtering, we
retained around 100,000 FT and BT sentence pairs
respectively.

In addition to synthetic data, we also incorpo-
rated document parallel data from News Com-
mentary v18.14, which assists the model in trans-
lating long text, and instruction fine-tuning data
TowerBlocks-v0.2 (Alves et al., 2024) to help the
model follow more diverse instructions. The News
Commentary v18.1 data we used includes sections
ja-zh, en-zh, en-de, en-hi, en-ja, en-ru, en-es, en-
cs, cs-ru, cs-de, cs-es, cs-hi, cs-ja, cs-zh, and ja-ru.
We also excluded the data from TowerBlocks-v0.2
that includes FLoRes (Goyal et al., 2021), and the
NTREX-128 (Federmann et al., 2022) sections, as
we used these two datasets as our test sets to verify
the performance of the model.

2.4 Ensemble Learning

The ensemble learning approach has demonstrated
significant efficacy in a wide range of machine
learning tasks. In machine translation tasks, en-
semble learning completes the generation of the
entire translation by using multiple different ma-
chine translation models to autoregressively vote
for the probability distribution of the next word.
However, for LLMs, this method implies a huge
memory occupancy and computational resource
consumption, so we use transductive ensemble
learning (Wang et al., 2020) to replace this way
of generating with multiple models simultaneously.
Transductive ensemble learning first utilizes multi-
ple different translation models to generate trans-
lations for the same test set separately, then aggre-
gates all translations as fine-tuning data. The final
translation is generated by one translation model
after fine-tuning on this data. Ensemble learning
conventionally entails training diverse models via
different random initializations. However, this ap-
proach proves inefficient in our context, as we are
mandated to employ the identical pre-trained model
for supervised fine-tuning. Therefore, we used dif-

4https://data.statmt.org/news-commentary/v18.1/



150

Task Prompt

Forward and back translation
Translate the following text from SRC_LANG to TGT_LANG.
SRC_CONTENT

Automatic post-editing

Given a source SRC_LANG sentence and its TGT_LANG translation,
please modify and correct the TGT_LANG translation to get a more
accurate and fluent TGT_LANG translation.
Source (SRC_LANG): SRC_CONTENT
Translation (TGT_LANG): TGT_CONTENT
Corrected translation (TGT_LANG):

Synthetic data filtering

Source (SRC_LANG): SRC_CONTENT
Translation (TGT_LANG): TGT_CONTENT
Please check if the above translation is an accurate and fluent translation
of its source text? Please only answer "yes" or "no"

Table 2: All the prompts we use to generate synthetic data.

ferent fine-tuning data to train multiple models for
ensemble learning. Different fine-tuning data is
obtained by randomly sampling synthesized data
from different parts.

3 Experiments

3.1 Experiment Settings

For continual pretraining phase, we trained the
scaled-up model with 21 billion parameters on 8
NVIDIA H800 GPUs. For the optimization pro-
cess, we employed the Adam optimizer (Kingma
and Ba, 2014), with β1 = 0.9, β2 = 0.99. We
adopted a learning rate scheduling strategy that re-
mained constant after warmup phase, setting the
number of warmup steps to 200, the maximum
learning rate at 0.00001 and weight decay to 0.1.
The batch size was set to 3.14 million tokens, the
length of each sequence was set to 4096, and a total
of 56 billion tokens have been trained.

For supervised fine-tuning phase, we fine-tuned
the continual pretrained model on 16 NVIDIA
H800 GPUs. We leveraged the Adam optimizer for
the optimization process, setting β1 = 0.9, β2 =
0.99. We employed a cosine learning rate schedul-
ing strategy, with a warmup ratio of 0.01, a peak
learning rate at 0.000007, and a weight decay of
0.1. Configuring the batch size to 480 sentences,
we trained the model for a single epoch encompass-
ing approximately 1.5 million sentences.

When conducting transductive ensemble learn-
ing, we increased the batch size to 800 sentences,
adopted a fixed learning rate, and reduced the learn-
ing rate to 0.000001. Similarly, we only fine-tune
for one epoch on the ensemble data.

3.2 Results

The FLoRes (Goyal et al., 2021) and NTREX-128
(Federmann et al., 2022) test sets were utilized as
our evaluation benchmarks. The performance of
the machine translation system was assessed using
SacreBLEUpost-2018-call and COMET (Rei et al.,
2022)5 metrics. We uesed vLLM (Kwon et al.,
2023) to infer all LLMs. We chose c4ai-command-
r-plus and Qwen1.5-110B-Chat as our baselines for
comparison, and all results were obtained through
zero-shot evaluation.

Test results on the FLoRes test set for all trans-
lation directions are shown in Table 3. We used
greedy decoding and beam search with beam size
= 5 to generate translations for our model, and pro-
vided the ensemble effect on this test set. It is clear
that, just like traditional neural machine translation
models, beam search performs better than greedy
decoding in terms of BLUE and COMET scores
across all translation directions. Ensemble learning
has a steady improvement on BLEU scores, but the
overall change in COMET scores is not significant.
Compared with the two baseline systems CMD-R-
P and Qwen1.5-L, our model achieved equivalent
or better performance in the seven directions of
cs→uk, en→zh, en→de, en→hi, en→is, en→uk,
and en→cs. The performance outcomes presented
in Table 4 are based on evaluations conducted us-
ing the NTREX-128 test set. These results mirror
those observed in the FLoRes test set, indicating a
consistent performance trend across both datasets.

5https://huggingface.co/Unbabel/wmt22-comet-da
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CMD-R-P Qwen1.5-L
our model
greedy decoding

our model
beam search

our model
ensemble learning

cs→uk
BLEU 24.1 20.5 23.9 24.4 24.6
COMET 90.47 87.96 90.18 90.41 90.47

ja→zh
BLEU 31.6 34.1 34.8 35.3 35.0
COMET 87.91 88.10 87.99 88.11 87.98

en→zh
BLEU 39.9 44.0 46.9 47.5 47.6
COMET 88.71 89.08 89.22 89.28 89.26

en→de
BLEU 41.1 33.9 40.5 41.1 41.6
COMET 88.84 87.37 88.60 88.73 88.84

en→hi
BLEU 27.3 19.9 27.6 28.5 28.7
COMET 80.47 75.01 79.99 80.75 80.67

en→is
BLEU 12.1 9.8 19.8 20.5 20.7
COMET 71.41 63.82 82.77 83.66 84.02

en→ja
BLEU 49.8 42.2 49.4 50.1 50.4
COMET 91.70 89.88 91.50 91.59 91.61

en→ru
BLEU 32.4 27.6 31.3 31.9 32.4
COMET 90.70 87.98 90.09 90.32 90.28

en→es
BLEU 30.4 27.1 29.4 29.4 29.5
COMET 87.29 86.64 87.01 87.06 86.98

en→uk
BLEU 30.4 24.6 31.2 32.0 32.2
COMET 90.88 88.19 90.56 90.83 90.92

en→cs
BLEU 32.7 26.6 32.8 34.3 34.4
COMET 92.09 90.04 91.78 92.15 92.13

Table 3: Test results on the FLoRes test set for all translation directions. CMD-R-P represents c4ai-command-r-plus,
and Qwen1.5-L represents Qwen1.5-110B-Chat.
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CMD-R-P Qwen1.5-L
our model
greedy decoding

our model
beam search

cs→uk
BLEU 20.9 16.8 20.4 20.8
COMET 88.26 84.57 87.80 88.00

ja→zh
BLEU 25.6 28.7 28.7 29.0
COMET 84.42 84.84 84.83 84.85

en→zh
BLEU 31.7 36.6 39.0 39.5
COMET 85.60 86.41 86.76 86.83

en→de
BLEU 33.9 27.1 33.2 33.9
COMET 87.05 84.64 86.63 86.78

en→hi
BLEU 22.2 16.8 23.3 24.1
COMET 78.07 72.23 77.96 78.58

en→is
BLEU 14.8 11.2 23.4 24.1
COMET 70.14 62.32 82.75 83.67

en→ja
BLEU 41.3 35.0 41.3 42.4
COMET 89.51 87.40 89.37 89.45

en→ru
BLEU 29.9 23.8 30.4 31.5
COMET 88.13 84.47 87.47 87.88

en→es
BLEU 42.5 38.2 42.4 42.7
COMET 87.06 85.82 86.69 86.85

en→uk
BLEU 26.2 20.5 26.3 26.9
COMET 88.86 85.42 88.51 88.73

en→cs
BLEU 29.0 22.6 29.1 30.4
COMET 89.90 87.06 89.73 90.19

Table 4: Test results on the NTREX-128 test set for all translation directions. CMD-R-P represents c4ai-command-r-
plus, and Qwen1.5-L represents Qwen1.5-110B-Chat.

cs→uk ja→zh en→zh en→de en→hi en→is en→ja en→ru en→es en→uk en→cs
FT 90.32 87.79 89.21 88.55 80.48 83.37 91.55 90.11 86.94 90.64 91.93
BT 90.43 88.18 89.24 88.77 81.45 84.12 91.64 90.43 87.20 90.99 92.38
MIX 90.32 88.12 89.26 88.63 80.76 84.08 91.50 90.19 87.06 90.63 91.93

Table 5: COMET scores of models fine-tuned on different data on the Flores test set. FT is fine-tuned on forward
translation data. BT is fine-tuned on back translation data. MIX is fine-tuned on both forward and back translation
data.
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3.3 Forward Translation vs Back Translation

To determine the effectiveness of forward trans-
lation versus back translation, we separately fine-
tuned the continual pretrained model using forward
translation data, back translation data, and a com-
bination of both. For each approach, we randomly
chose 80,000 data samples per language translation
direction. For the combined dataset, we selected
40,000 samples from both the forward translation
and back translation pools. The results are pre-
sented in Table 5, all of which were generated using
beam search. We can see that the back translation
yields better performance, whereas mixed data does
not result in significant improvement. Due to time
constraints, we used mixed data in the WMT24
competition, this conclusion will guide us to fur-
ther improve our model in the future.

4 Conclusion

In this paper, we present IOL Research’s contribu-
tions to the WMT24 General Translation shared
task, covering all translation aspects. Our ap-
proach utilizes LLMs to develop an effective trans-
lation system. Experimental results demonstrate
that our model, which contains 21 billion param-
eters, achieves competitive results comparable to
models with 100 billion parameters. According to
the official automatic evaluation metrics (Kocmi
et al., 2024), our system achieved 8 first places in
11 translation directions spanning both open and
constrained system categories, including Czech to
Ukrainian, English to German, English to Span-
ish, English to Hindi, English to Russian, English
to Ukrainian, English to Chinese, and Japanese to
Chinese.
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