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Abstract
Multimodal machine translation leverages mul-
tiple data modalities to enhance translation
quality, particularly for low-resourced lan-
guages. This paper uses a multimodal model
that integrates visual information with textual
data to improve translation accuracy from En-
glish to Hindi, Malayalam, Bengali, and Hausa.
This approach employs a gated fusion mech-
anism to effectively combine the outputs of
textual and visual encoders, enabling more nu-
anced translations that consider both language
and contextual visual cues. The model’s perfor-
mance was evaluated against the text-only ma-
chine translation model based on BLEU, ChrF2
and TER. Experimental results demonstrate
that the multimodal approach consistently out-
performs the text-only baseline, highlighting
the potential of integrating visual information
in low-resourced language translation tasks.

1 Introduction

In recent years, neural network-based translation
models have been widely used in translation tasks,
demonstrating remarkable performance in terms of
fluency and precision compared to previous gener-
ations of machine translation systems (Cho et al.,
2014). The Transformer model, in particular, has
shown significant improvements in machine transla-
tion tasks. A crucial component of the Transformer
model is the cross-attention mechanism, which en-
hances the model’s ability to capture semantic de-
pendencies by combining self-attention—allowing
source words to interact with one another—with
attention mechanisms that involve target words
(Vaswani et al., 2017).

Despite the broader context focus in text-only
translation models, understanding the input text
remains a challenge. In natural language, lexical
ambiguity (Rios Gonzales et al., 2017) occurs when
a single word has multiple meanings or interpre-
tations, complicating text comprehension. For ex-
ample, in the domain of finance and economics,

the word "bank" almost always refers to a financial
institution rather than the side of a river.

Multimodal Machine Translation (MMT), a sub-
area of NMT, has been introduced to utilise visual
information from other modalities, such as images,
to translate an aligned sentence in a source lan-
guage into a target language. Recent studies (Yao
and Wan, 2020; Zhao et al., 2022; Wang and Xiong,
2021) demonstrate the potential of leveraging mul-
timodal information, alongside textual content, to
enhance translation quality. Visual cues, as an ad-
ditional source of information, can provide valu-
able insights that complement textual information,
enabling MMT models to better understand and
produce more accurate and contextually appropri-
ate translations. The concept behind MMT is to
integrate visual information to help disambiguate
input words, detect the correct scenes in the source
language, and select the appropriate translation in
the target language (Hatami et al., 2022). MMT
is particularly beneficial when dealing with low-
resource languages where there is not sufficient
parallel data to train the model.

This paper aims to explore the benefit of using
visual information in translating English into four
different low-resource languages, Hindi, Malay-
alam, Bengali and Hausa. We used a gated fusion
approach to integrate textual and visual information
in the encoder and generate the text in the target
language on the decoder side. In the baseline, we
train the model on the input text without consider-
ing the aligned image. For the multimodal model,
we trained four different models for each language.
We explain our methodology in Section 3, our ex-
perimental setup in Section 4, results in Section 5,
and we conclude our findings in Section 6.

2 Related Work

There are various approaches proposed to integrate
visual information with text-only translation mod-
els. These approaches typically utilise a visual
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attention mechanism in either the decoder or en-
coder to capture the relationships between words
in a sentence and image features. The common
method involves extracting visual information by
employing Convolutional Neural Networks (CNN)
and then integrating this information with textual
features.

Regarding visual features, existing studies on
MMT employ two types of visual features: global
and local visual features. Global features repre-
sent the entire image as a single vector without
attention to the spatial layout of the image. On the
other hand, local features describe an image as a
sequence of equally sized patches (Calixto et al.,
2017). Local features are extracted from multiple
points in the image and are more robust to clutter
than global features (Lisin et al., 2005). CNNs can
be used to extract both global and local features
from the image (Zheng et al., 2019).

Global image features are used in the encoder in
addition to word sequences (Huang et al., 2016).
Alternatively, they can be used to initialise the
hidden parameters of the encoder and decoder of
a RNN (Calixto and Liu, 2017). Element-wise
multiplication was used to initialise the hidden
states of the encoder/decoder in the attention-based
model (Caglayan et al., 2017). Visual attention
mechanism was employed to link visual and corre-
sponding text semantically (Zhou et al., 2018).

Several approaches have been proposed to im-
prove the quality of the visual modality in Multi-
modal Machine Translation (MMT). For instance, a
multimodal Transformer-based self-attention mech-
anism was introduced to encode relevant informa-
tion in images (Yao and Wan, 2020). A graph-
based multimodal fusion encoder was developed
to capture various relationships between modali-
ties (Yin et al., 2020). Additionally, a translate-
and-refine mechanism was implemented using im-
ages in a second-stage decoder to refine a text-only
Neural Machine Translation (NMT) model, par-
ticularly for handling ambiguous words. A latent
variable model was also employed to extract the
multimodal relationships between image and text
modalities (Calixto et al., 2019).

Recent methods aim to reduce noise in visual
information and select visual features relevant to
the text. For example, object-level visual mod-
elling has been used to mask irrelevant objects
and specific words in the source text to enhance
visual feature learning (Wang and Xiong, 2021).

Object detection in the image encoder has been
employed to extract visual features from object re-
gions within an image, which are then applied to a
doubly-attentive decoder model (Zhao et al., 2022).

In this paper, we adopt the gated fusion MMT
model (Wu et al., 2021), which integrates visual
and textual representations through a gate mech-
anism. This gated fusion mechanism allows the
model to adjust the amount of visual information
that contributes to the translation process.

3 Methodology

The objective of our experiments is to evaluate
the impact of visual features on translation quality
in low-resource languages. Following Wu et al.
(2021), we conduct experiments to assess both the
text-only Transformer and the gated fusion multi-
modal Transformer (gated fusion MMT) using the
shared task data for Hindi, Bengali, Malayalam,
and Hausa. In this section, we provide descriptions
of the model architectures mentioned above.

3.1 Text-only Machine Translation

For the text-only translation model, we use the
training and development sets for Hindi, Bengali,
Malayalam, and Hausa to train the Transformer-
based model. This model serves as our baseline
for evaluating the multimodal model. The text-
only Transformer architecture was introduced by
Vaswani et al. (2017). It consists of an encoder-
decoder structure, where both the encoder and
decoder are composed of stacked layers of self-
attention, and feed-forward neural networks.

First, we tokenize the sentences into subwords
in the training, development, and test sets. We then
train four translation models on the tokenized sen-
tences for these language pairs. Tokenization helps
the model better learn the language and handle out-
of-vocabulary words, especially in low-resource
languages. During the inference step, we translate
the tokenized test sentences from English into the
four low-resource languages.

3.2 Multimodal Machine Translation

For the multimodal model, we use the gated fusion
approach (Wu et al., 2021) to fuse both textual and
visual information. Gated fusion MMT incorpo-
rates visual information into the translation process
in a controlled and interpretable manner using a
gating mechanism. The textual component is simi-
lar to the text-only model, with tokenized sentences
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Dataset Hindi Bengali Malayalam Hausa
Training Set 28,932 28,930 29,000 28,930
Development Set (D-Test) 998 998 1,000 998
Evaluation Set (E-Test) 1,595 1,595 1,600 1,595
Challenge Test Set (C-Test) 1,400 1,400 1,400 1,400
Total 32,925 32,923 33,000 32,923

Table 1: Number of sentences of Visual Genome dataset for Hindi, Bengali, Malayalam and Hausa.

fed into the model. On the visual side, each sen-
tence is paired with an image, and for each image,
we have the coordinates of the rectangular region
corresponding to the part of the image that relates
to the sentence (see Figure 1).

For each language, we trained two models: one
that considers the entire image and another that
considers only the specific rectangular region. We
use the pre-trained ResNet-101 CNN (He et al.,
2016) to extract visual features from the images. In
this study, we extract visual representations from
both the whole image and the designated rectangu-
lar region, which is aligned with the text caption.
The motivation for using the partial image (rather
than the full image) is that objects outside the rect-
angular region may be irrelevant to the text caption
and could potentially degrade translation model
performance (Hatami et al., 2023).

Both the textual and visual representations are
fed into the gated fusion model, allowing it to be
trained based on both modalities. We then use these
multimodal models to translate test sentences that
are aligned with images. More detailed informa-
tion about the multimodal models can be found in
Section 4.2.2.

4 Experimental Setup

4.1 Dataset
The Hindi Visual Genome (HVG) (Parida et al.,
2019), Bengali Visual Genome (BVG) (Sen et al.,
2022), Malayalam Visual Genome (MVG) (Parida
et al., 2019), and Hausa Visual Genome
(HaVG) (Abdulmumin et al., 2022) datasets are
multimodal datasets designed for English-to-Hindi,
English-to-Bengali, English-to-Malayalam, and
English-to-Hausa machine translation, respectively
(Figure 1). These datasets, based on the original Vi-
sual Genome dataset, contain real-world images an-
notated with region-specific captions. The captions
have been translated into the respective languages
through a combination of automated translation and
manual post-editing by native speakers to ensure

contextual accuracy.
The MVG, HVG, BVG, and HaVG datasets are

divided into training, development, evaluation, and
challenge test sets, as outlined in Table 1.

Training Set: The training sets for Malayalam,
Hindi, Bengali, and Hausa contain 29,000, 28,932,
28,930, and 28,930 image-caption pairs, respec-
tively. Each pair consists of an image, a selected
region in the image, and its corresponding En-
glish and Malayalam/Hindi/Bengali/Hausa cap-
tions. The captions have been manually refined
to align with the visual context of the images.

Development Set (D-Test): The development
sets contain 1,000 image-caption pairs in the
Malayalam dataset and 998 pairs in the Hindi, Ben-
gali, and Hausa datasets. These sets are used to
validate and fine-tune model performance during
the training process.

Evaluation Set (E-Test): The evaluation sets in-
clude 1,600 image-caption pairs in the Malayalam
dataset and 1,595 pairs in the Hindi, Bengali, and
Hausa datasets. These sets are used for evaluating
model performance on unseen data, providing a
benchmark for generalization capabilities.

Challenge Test Set (C-Test): The challenge test
sets for all four languages consist of 1,400 image-
caption pairs. These sets are designed to focus
on ambiguous English words that require visual
context to resolve their meaning in Malayalam,
Hindi, Bengali, or Hausa. The ambiguous words
were identified based on embedding similarity, and
the corresponding images help disambiguate their
meaning, providing a robust test for multimodal
translation systems (Hatami et al., 2024).

4.2 Machine Translation Models

4.2.1 Text-only Translation Model
A text-only Transformer model serves as the base-
line in our experiment, utilizing only the textual
captions of images for translation. The model is
trained using the OpenNMT toolkit (Klein et al.,
2018) on the Visual Genome dataset for English-
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Figure 1: Examples from the Visual Genome dataset show English caption of the rectangular region (solid red line)
with translation in Hindi, Bengali, Malayalam and Hausa.

to-Hindi, Bengali, Malayalam, and Hausa transla-
tions. It comprises a 6-layer Transformer architec-
ture with attention mechanisms in both the encoder
and decoder stages, trained for 50k steps.

The encoder processes a sequence of tokens
(words or subword units) and generates context-
aware representations for each token. The decoder
generates the output sequence (e.g., translated text)
by leveraging the encoded representations from
the encoder along with the previously generated to-
kens. It employs multi-head self-attention and feed-
forward layers, incorporating additional attention
mechanisms to effectively focus on the encoded
input. The core innovation of the Transformer is
the self-attention mechanism, which computes
attention scores across all tokens in the sequence,
creating weighted representations that capture con-
textual relationships between tokens.

Since the Transformer model does not inherently
process sequences in a fixed order, as recurrent
neural networks (RNNs) do, it uses positional en-
codings to inject information about the position of
tokens in the sequence. These positional encod-
ings are added to the input embeddings, enabling
the model to differentiate between tokens based on
their positions within the sequence. To enhance
its ability to capture different types of relation-
ships between tokens, the Transformer employs
multi-head attention. This involves splitting the
self-attention process into multiple parallel atten-
tion heads, each learning a different set of attention
weights. The outputs from all heads are then con-

catenated and linearly transformed to provide a
richer, more comprehensive representation of the
input sequence.

SentencePiece (Kudo and Richardson, 2018) is
employed to segment words into subword units,
offering a language-independent approach to tok-
enization without requiring pre-processing steps,
thereby enhancing the model’s adaptability and ver-
satility in handling raw text.

4.2.2 Multimodal Machine Translation
In the MMT model, we adopt the gated fusion
MMT model (Wu et al., 2021), which fuses vi-
sual and text representations by employing a gate
mechanism. Gated fusion is a mechanism used to
integrate visual information from images with tex-
tual information from source sentences during the
translation process. The main idea behind gated fu-
sion is to control the amount of visual information
that is blended into the textual representation using
a gating matrix.

The source sentence x is fed into a vanilla Trans-
former encoder to obtain a textual representation
Htext of dimension T×d 1. The image z is pro-
cessed using a pre-trained ResNet-101 CNN (He
et al., 2016), which has been trained on the Ima-
geNet dataset (Russakovsky et al., 2014), to extract
a 2048-dimensional average-pooled visual repre-
sentation, denoted as Embedimage(z). The visual
representation Embedimage(z) is projected to the

1T is the number of tokens (words) in the input sentence,
and d is the dimensionality of the representation
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English → Hindi BLEU ↑ ChrF2 ↑ TER ↓

Text-only MT 38.26 58.65 42.54

Multimodal MT (entire image) 39.65* 59.34* 41.92*
Multimodal MT (partial image) 38.64 58.84 42.62

English → Bengali BLEU ↑ ChrF2 ↑ TER ↓

Text-only MT 39.85 64.32 39.24

Multimodal MT (entire image) 41.92* 65.96* 38.37*
Multimodal MT (partial image) 39.45 64.75 39.65

English → Malayalam BLEU ↑ ChrF2 ↑ TER ↓

Text-only MT 28.94 58.74 54.87

Multimodal MT (entire image) 32.34* 61.15* 53.94*
Multimodal MT (partial image) 28.76 58.63 54.58

English → Hausa BLEU ↑ ChrF2 ↑ TER ↓

Text-only MT 39.86 61.21 47.59

Multimodal MT (entire image) 41.25* 62.94* 46.48*
Multimodal MT (partial image) 38.31 60.87 47.62

Table 2: BLEU, ChrF2 and TER scores for text-only and multimodal models for English to Hindi, Bengali,
Malayalam and Hausa on the test set (* represents a statistically significant result compared to the baseline text-only
model at a significance level of p < 0.05).

same dimension as Htext using a weight matrix
Wz , denoted as:

Embedimage(z) = WzResNetpool(z)

where Wz is a learned projection matrix.
To determine the amount of visual information

to fuse with the textual representation, a gating
matrix Λ of dimension T×d is generated ([0, 1]T×d).
This matrix is computed using a sigmoid function
applied to both the projected visual representation
and the textual representation:

Λ = σ
(
WΛEmbedimage(z) + UΛHtext

)
where WΛ and UΛ are learned parameters, and
σ is the sigmoid function. The gating matrix Λ
makes the fusion process interpretable, as it con-
trols how much visual context is used in translation.
A larger value in Λ indicates that the model is re-
lying more on the visual context, while a smaller
value indicates a stronger reliance on the textual
representation alone.

The final representation H that combines both
textual and visual information is given by:

H = Htext + ΛEmbedimage(z)

This fused representation H is then passed into
the Transformer decoder for generating the target
translation.

4.3 Evaluation Metrics

We use three evaluation metrics: BLEU (Pap-
ineni et al., 2002), ChrF2 (Popović, 2015), and
TER (Snover et al., 2006). BLEU assesses the pre-
cision of translation by comparing candidate trans-
lations to reference translations based on n-grams.
ChrF2 evaluates the similarity between character
n-grams in machine-generated and reference trans-
lations, particularly beneficial for languages with
complex writing systems. TER quantifies the num-
ber of edits needed to align machine translations
with human-generated references. We conduct sta-
tistical significance testing using the sacreBLEU2

toolbox.

2https://github.com/mjpost/sacrebleu

https://github.com/mjpost/sacrebleu
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5 Results and Discussion

In this section, we present the results of our experi-
ments, where we trained our models on the Visual
Genome dataset and evaluated the translation qual-
ity using the BLEU, ChrF2, and TER metrics. We
compare the translation quality of our proposed
models with text-only baseline models, where the
text-only NMT model was trained solely on text
captions without images, across test sets for four
languages.The MMT models were trained on both
text captions and original images with entire im-
ages and just considering the coordinates of a part
of the image related to the caption (partial image).

The results in Table 2 demonstrate the perfor-
mance of both text-only and multimodal models
across four language pairs: English to Hindi, Ben-
gali, Malayalam, and Hausa. For English to Hindi,
the MMT model that utilizes the entire image out-
performs the text-only model, achieving a BLEU
score of 39.65, ChrF2 score of 59.34, and TER
score of 41.92. These improvements are statisti-
cally significant over the text-only MT model at
p < 0.05, highlighting the benefit of incorporating
visual context into the translation process. Similar
trends are observed for English to Bengali, where
the entire image-based MMT achieves a BLEU
score of 41.92, a ChrF2 score of 65.96, and a TER
score of 38.37, all of which are significantly better
than the text-only model.

For English to Malayalam, the entire image-
based multimodal model also shows clear advan-
tages, with a BLEU score of 32.34, ChrF2 of 61.15,
and TER of 53.94, outperforming the text-only
model on all metrics. Finally, in the case of English
to Hausa, the entire image-based multimodal MT
model again demonstrates superior performance,
achieving a BLEU score of 41.25, ChrF2 of 62.94,
and TER of 46.48, compared to the text-only model.
Across all language pairs, the partial image-based
multimodal models do not consistently outperform
the text-only models, suggesting that complete vi-
sual context is necessary for achieving the best
translation quality.

6 Conclusion

This paper demonstrates the significant advantages
of employing a multimodal machine translation
approach that integrates visual information with
textual data, especially in the case of low-resourced
languages like Hindi, Malayalam, Bengali, and
Hausa. The results indicate that the gated fusion

MMT model enhances translation accuracy and
provides a more nuanced understanding of context,
leading to improved performance over traditional
text-only models. By leveraging visual context, we
can address the challenges faced in translating low-
resourced languages, highlighting the importance
of incorporating diverse data modalities to enrich
the translation process.

Acknowledgements

This publication has emanated from research
conducted with the financial support of Science
Foundation Ireland (SFI) under Grant Numbers
SFI/12/RC/2289_P2 (Insight) and 13/RC/2106_P2
(ADAPT), co-funded by the European Regional De-
velopment Fund. For the purpose of Open Access,
the author has applied a CC BY public copyright
licence to any Author Accepted Manuscript version
arising from this submission.

References
Idris Abdulmumin, Satya Ranjan Dash, Musa Ab-

dullahi Dawud, Shantipriya Parida, Shamsuddeen
Muhammad, Ibrahim Sa’id Ahmad, Subhadarshi
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