
Proceedings of the Ninth Conference on Machine Translation (WMT), pages 139–146
November 15–16, 2024. ©2024 Association for Computational Linguistics

139

MSLC24 Submissions to the General Machine Translation Task

Samuel Larkin Chi-kiu Lo羅致翹
Digital Technologies Research Centre

National Research Council Canada (NRC-CNRC)
{samuel.larkin,chikiu.lo,rebecca.knowles}@nrc-cnrc.gc.ca

Rebecca Knowles

Abstract

The MSLC (Metric Score Landscape Chal-
lenge) submissions for English–German,
English–Spanish, and Japanese–Chinese are
constrained systems built using Transformer
models for the purpose of better evaluating
metric performance in the WMT24 Metrics
Task. They are intended to be representative of
the performance of systems that can be built
relatively simply using constrained data and
with minimal modifications to the translation
training pipeline.

1 Introduction

Lo et al. (2023) introduced the Metric Score Land-
scape Challenge (MSLC) dataset for the WMT23
Metrics Task, with the goal of examining automatic
MT evaluation metric performance across a wider
range of quality. That work found unexpected be-
haviours in several MT metrics, by examining per-
formance across a wide range of quality and by
analyzing metric characteristics other than corre-
lation. A major limitation of that work was that
there was no human evaluation of the medium- to
low-quality MT outputs that were included in the
MSLC dataset. To resolve this disconnect between
the high-quality WMT systems and the core MSLC
systems, we submit the higher performing end of
the MSLC systems to the WMT General MT task
for human evaluation. The systems described here
are not highly-competitive systems, and are useful
primarily for their purpose in evaluating metrics.

We build MSLC models for three language pairs:
English→German (eng→deu), English→Spanish
(eng→spa), and Japanese→Chinese (jpn→zho).
All models are sentence-level models that handle
paragraph- or document-level translation by per-
forming sentence splitting, translation, and then
concatenating the translated sentences. They are
built without any additional modifications to the
Transformer architecture and without additional
components like backtranslation, tagging, factors,

or domain-specific features (with one exception
for preprocessing input in the Japanese→Chinese
speech domain). The English→German model
is the same model described in Lo et al.
(2023). The English→Spanish model uses lan-
guage identification for training data filtering. The
Japanese→Chinese model incorporates additional
postprocessing.

In the remainder of this system description paper,
we describe the data used (Section 2), the prepro-
cessing and postprocessing performed (Section 3),
and the models trained (Section 4) for our submis-
sions for the three language pairs. Using the human
evaluations produced by the Metrics task, we use
the MSLC systems as a case study of some risks
of the new automatic metric-based pre-selection of
systems for human annotation at the General MT
task (Section 5).

2 Data

We retrieved the corpora using the provided tool
mtdata==0.4.1 (Gowda, 2024) for eng→spa and
jpn→zho and reused what we had downloaded
(without the use of the tool) from the 2023 data
download table for eng→deu.

2.1 English→German

We re-used the English→German model from Lo
et al. (2023), and refer the reader to that paper for
full details of the training data used. The new-
stest2020 data was used for validation, and the
training corpora were downloaded from the WMT
2023 General Machine Translation download ta-
ble.1

1https://www2.statmt.org/wmt23/
translation-task.html#download. Note that this in-
cludes News Commentary v18.1 rather than v16, which the
download tool delivered. By email communication with the
organizers, we confirmed that both versions were permitted
for the constrained track.

https://www2.statmt.org/wmt23/translation-task.html#download
https://www2.statmt.org/wmt23/translation-task.html#download


140

2.2 English→Spanish
We used some of the available corpora for the
General Machine Translation constrained track2

and filtered based on language ID (due to large
amounts of target-side English in some training cor-
pora). We opted not to use OPUS-multiccaligned-
v1, ParaCrawl-paracrawl-9, Statmt-ccaligned-1
and Statmt-commoncrawl_wmt13-1, due to known
issues of noise in web-crawled corpora; for more
discussion see, i.a., Khayrallah and Koehn (2018);
Lo et al. (2018); Kreutzer et al. (2022). The full set
of corpora used is shown in Table 1.

As a first filtering step, we kept sentence
pairs where sentences have less than or equal
to 4000 characters and less or equal to 200
words. We then proceeded with a second
filtering step. For each corpora, we used
lingua-language-detector==2.0.2 (M. Stahl,
2023) in two ways. First, we ran lingua in a con-
strained bilingual mode, limiting the available lan-
guages to only English and Spanish. Second, we
ran it again but this time in an unconstrained mode
where it had to guess the language using all of its
supported languages. We then did the final filtering
by dropping sentence pairs if any of the following
were true:

1. the source English sentence wasn’t detected
as English by both modes of lingua

2. the target Spanish sentence wasn’t detected as
Spanish by both modes of lingua

3. both sentences were identical

While we did not perform ablation experiments
to compare these steps for filtering by language ID,
we note that this process of filtering was introduced
due to the observation of English output observed
(by manual inspection) in our preliminary systems.
Introducing this filtering resulted in output that was
qualitatively observed to contain much less English
text.

Finally, with a restricted subset of the initially
chosen corpora, we sampled 20,000,000 sentence
pairs from the corpora listed in Table 1 using the
implementation of reservoir sampling in Larkin
(2024) with 2024 as the seed.

We used Statmt-newstest-2012-eng-spa
as our validation set, as suggested by
mtdata.recipes.wmt24-constrained.yml.

2mtdata get-recipe -i wmt24-eng-spa -o
wmt24-eng-spa –compress –no-merge

2.3 Japanese→Chinese
We fetched all jpn→zho corpora available for
WMT24’s General Machine Translation.3 We sam-
pled 2000 sentence pairs for validation and 2000
sentence pairs for test (unused) from Facebook-
wikimatrix-1, Neulab-tedtalks_train-1, OPUS-
wikimedia-v20210402, Statmt-news_commentary-
18.1. The remaining sentence pairs and all sentence
pairs listed in the corpora of the second part of Ta-
ble 2 were included in train.

3 Preprocessing and Postprocessing

There are two main types of preprocessing per-
formed: subword segmentation (Section 3.1),
which is perfomed on both the training data and the
test data, and sentence splitting (Section 3.2) which
is performed only on the WMT test data (as our
models are trained primarily as sentence-level sys-
tems and should thus be applied to sentences rather
than the full paragraphs and documents supplied at
test time). We also describe the postprocessing that
we performed (Section 3.3).

3.1 Subword Segmentation (Train and Test)
For details on our subword segmentation ap-
proach for eng→deu, see Lo et al. (2023). Our
subword segmentation approach for eng→spa
and jpn→zho is described here. To seg-
ment the corpora, a separate bilingual tokenizer
(SentencePieceUnigramTokenizer) for each lan-
guage pair was trained using HuggingFace’s to-
kenizers (Moi and Patry, 2022), library version
0.14.1. For each language pair, the vocabulary
size was set to 32k tokens. Each tokenizer per-
forms:

• control character and white space normaliza-
tions through HuggingFace’s Nmt4

• NFKC normalization using HuggingFace’s
NFKC5

• and also applies a few normalizations done
by Portage (Larkin et al., 2022). Some of
these may overlap with the other normaliza-
tion steps; see Appendix A.

3mtdata get-recipe -i wmt24-jpn-zho -o
wmt24-jpn-zho –compress –no-merge

4https://huggingface.co/docs/tokenizers/
api/normalizers#tokenizers.normalizers.Nmt and
https://github.com/huggingface/tokenizers/blob/
main/tokenizers/src/normalizers/unicode.rs#L44

5https://huggingface.co/docs/tokenizers/api/
normalizers#tokenizers.normalizers.NFKC

https://huggingface.co/docs/tokenizers/api/normalizers#tokenizers.normalizers.Nmt
https://huggingface.co/docs/tokenizers/api/normalizers#tokenizers.normalizers.Nmt
https://github.com/huggingface/tokenizers/blob/main/tokenizers/src/normalizers/unicode.rs#L44
https://github.com/huggingface/tokenizers/blob/main/tokenizers/src/normalizers/unicode.rs#L44
https://huggingface.co/docs/tokenizers/api/normalizers#tokenizers.normalizers.NFKC
https://huggingface.co/docs/tokenizers/api/normalizers#tokenizers.normalizers.NFKC


141

corpus original step1 step2 ratio (%)
EU-dcep-1 3,710,534 3,708,524 2,570,271 69.3

Facebook-wikimatrix-1 6,452,177 6,448,669 4,854,605 75.2
LinguaTools-wikititles-2014 16,598,519 16,598,519 1,144,423 6.9

OPUS-dgt-v2019 5,127,624 5,126,271 3,432,757 66.9
OPUS-dgt-v4 3,168,368 3,167,629 2,138,218 67.5

OPUS-elrc_emea-v1 777,371 777,262 596,733 76.8
OPUS-eubookshop-v2 5,215,515 5,212,657 4,651,096 89.2

OPUS-europarl-v8 2,009,073 2,008,951 1,928,793 96.0
OPUS-europat-v3 51,352,279 51,352,021 48,077,464 93.6
OPUS-multiun-v1 11,350,967 11,339,127 9,864,021 86.9
OPUS-unpc-v1.0 25,227,001 25,209,933 19,437,858 77.1

OPUS-wikimatrix-v1 3,377,911 3,377,355 2,708,923 80.2
OPUS-wikimedia-v20210402 1,275,296 1,272,410 910,544 71.4

OPUS-wikipedia-v1.0 1,811,428 1,808,866 1,196,239 66.0
OPUS-xlent-v1.1 9,251,728 9,251,728 830,623 9.0

Statmt-news_commentary-18.1 500,180 500,173 481,628 96.3
Tilde-eesc-2017 2,531,892 2,531,718 2,209,249 87.3

Tilde-rapid-2016 684,260 684,202 599,462 87.6
total 150,422,123 150,376,015 107,632,907 71.6

Table 1: Number of sentence pairs left after each filtering step for English→Spanish. The ratio column indicates the
percentage of sentences pairs left from the original corpora after been filtered.

corpus # sentence pairs
Facebook-wikimatrix-1 1,325,674

Neulab-tedtalks_train-1 5,159
OPUS-wikimedia-v20210402 23,132

Statmt-news_commentary-18.1 1,625
KECL-paracrawl-2-zho 83,892

LinguaTools-wikititles-2014 1,661,283
OPUS-bible_uedin-v1 124,260

OPUS-ccmatrix-v1 12,403,136
OPUS-gnome-v1 50

OPUS-kde4-v2 118,258
OPUS-multiccaligned-v1 4,280,695

OPUS-openoffice-v3 68,952
OPUS-opensubtitles-v2018 1,091,295

OPUS-php-v1 12,214
OPUS-qed-v2.0a 18,098
OPUS-tanzil-v1 12,472

OPUS-ted2020-v1 15,982
OPUS-ubuntu-v14.10 226
OPUS-ubuntu-v14.10 34

OPUS-xlent-v1.1 1,396,116
total 21,316,879

Table 2: Number of sentence pairs in each jpn→zho
corpus. Corpora in the first part (Facebook-wikimatrix-1
to Statmt-news_commentary-18.1) were used to sample
validation and test. All corpora, except for the sentence
pairs in validation and test were use for train.

The Neural Machine Translation (NMT) vocab-
ulary is also augmented with 25 generic tokens
(unused in these experiments); this yields a final
vocabulary of 32029 tokens.

To train the eng→spa tokenizer, we used all
training corpora provided except for Facebook-
wikimatrix-1, LinguaTools-wikititles-2014,
OPUS-multiccaligned-v1, OPUS-wikimatrix-v1,
OPUS-wikimedia-v20210402, OPUS-wikipedia-
v1.0, OPUS-xlent-v1.1, ParaCrawl-paracrawl-9,
Statmt-ccaligned-1.

We used all 40 corpora available to train the
jpn→zho subtokenizer model.

3.2 Sentence Splitting (Test-Only)

This year’s General News Task test segments con-
sist of paragraphs. To match our system’s training
configuration, we first split the paragraphs and doc-
uments into sentences before performing subword
segmentation and translation for all language pairs.
We do this for both the official test set and the
test suites. We used utokenize.pl from Larkin
et al. (2022) to sentence split the English segments
of eng→deu and eng→spa. Since utokenize.pl
doesn’t support Japanese, we used ersatz (Wicks
and Post, 2021) for jpn→zho. The speech docu-
ments in jpn→zho contain some punctuation but,
in some cases, utterances appear to be separated
only by spaces. For this domain only, we first split
sentences using ersatz then followed this with a
heuristic of splitting on spaces. We kept track of
each sentence’s segment and document ID to later



142

enable us to reconstruct the translations into their
corresponding segment.

After sentence splitting is complete, we apply
the subword segmenters described in Section 3.1
and perform translation at the level of the sen-
tence. Since we perform sentence splitting of
the source, the original source segments (para-
graphs and documents) have to be reconstructed.
We take this sentence-level output and concate-
nate the sentences belonging to a given input seg-
ment back together; for English→German and
English→Spanish, we insert a space between sen-
tences, while for Japanese→Chinese we concate-
nate without spaces.

3.3 Postprocessing (Test-Only)

In two cases, we performed additional postprocess-
ing to handle issues specific to a language pair
and/or a domain (as our training and validation
data is more news-focused).

3.3.1 English→Spanish
Our eng→spa translations contained some <unk>
that clearly aligned to an emoji in the source (likely
due to our training data not having strong coverage
of social media domains). As a custom postprocess-
ing step for eng→spa, we replaced the first <unk>
with the first emoji in the source, the second <unk>
with the second emoji and so on. For <unk> that
did not have an emoji, they were considered spuri-
ous and were simply removed. Any extra emojis
that couldn’t be matched to a <unk> were simply
added at the end of that translation. This was done
because we noticed that our system would produce
a single <unk> for multiple consecutive emojis.

3.3.2 Japanese→Chinese
We noted some recurrent deficiencies in our Chi-
nese translations. To fix those, we applied the fol-
lowing postprocessing steps:

• remove spaces between two Chinese charac-
ters

• remove spaces surrounding Chinese punctua-
tion：；，。？！

• when a Chinese character is repeated three or
more times in a row, replace this with a single
instance of that character

• fold repeating quotation marks onto a single
quotation mark

4 MT System

We train all NMT models using Sockeye version
3.1.31 (Hieber et al., 2022), commit 13c63be5,
with PyTorch 1.13.1 (Paszke et al., 2019). Train-
ing was performed on 4 Tesla V100-SXM2-32GB
GPUs. Table 3 lists the parameter settings in our
experiments that differ from the Sockeye defaults.

We train the models until convergence which
is defined as no improvement in BLEU (Papineni
et al., 2002; Post, 2018) for 32 checkpoints (when a
model reaches this definition of convergence, train-
ing stops). The jpn→zho model trained for 390
checkpoints yielding its best checkpoint at update
358 and a BLEU score of 34.3 as reported on
OCELoT over the WMT General Test Set. The
eng→spa model trained for 832 checkpoints yield-
ing its best checkpoint at update 800 and a BLEU
score of 17.6 as reported on OCELoT over the
WMT General Test Set. The eng→deu model had
a score of 20.1 as reported on OCELoT over the
WMT General Test Set.

5 Risks of Automatic System Selection for
Human Evaluation

We submitted these systems with the intent of hav-
ing them evaluated by human annotators, based
on the understanding that “All submitted systems
will be scored and ranked by human judgement.”6

Unfortunately, the task included a larger number of
submissions than anticipated (Kocmi et al., 2024),
resulting in the decision to remove some systems
from human evaluation, as per the note in the eval-
uation section of the task page: “In the unlikely
event of an unprecedented number of system sub-
missions that we couldn’t evaluate, we may decide
to preselect the best performing systems for hu-
man evaluation with automatic metrics (such as
COMET), we will primarily remove closed sys-
tems from the evaluation. However, we believe
this won’t be applied and all primary systems will
be evaluated by humans.” Among these, our sub-
mitted eng→deu and jpn→zho systems were re-
moved from human evaluation, leaving only the
eng→spa system to receive human evaluation by
the General Task evaluation process.

However, all three of our submitted systems
were evaluated using MQM (Multidimensional
Quality Metrics; Lommel et al., 2013) by the Met-

6https://www2.statmt.org/wmt24/
translation-task.html, most recently accessed Sept. 24,
2024.

https://www2.statmt.org/wmt24/translation-task.html
https://www2.statmt.org/wmt24/translation-task.html


143

Name Value Default

amp True False
grading clipping type abs None
max sequence length 200:200 95:95

attention heads 16:16 8:8
shared vocabulary True False
transformer FFN 4096:4096 2048:2048

transformer model size 1024:1024 512:512
weight tying True False

batch size 8192 4096
batch type max-word word

cache last best params 2 0
cache metric BLEU perplexity

checkpoint interval 10 4000
decode and evaluate -1 (entire validation) 500
initial learning rate 0.06325 0.0002

learning rate scheduler type inv-sqrt-decay plateau-reduce
learning rate warmup 4000 0

max num checkpoint not improved 32 None
max num epochs 1000 None

metrics perplexity & accuracy undefined
optimized metric BLEU perplexity

optimizer Betas 0.9, 0.98 0.9, 0.999
update interval 2 1

Table 3: Differences between Sockeye’s default parameters and our eng→spa/jpn→zho configuration.

(a) English→Spanish (b) Japanese→Chinese (c) English→German

Figure 1: MQM scores on the News portion of the General MT test data, produced by the Metrics Task over a subset
of the submitted WMT systems. Error bars represent bootstrap resampling, 1000 times, for p < 0.05. In all cases,
our MSLC system appears at the far left of the plots, which are ordered by mean segment-level MQM score.



144

rics Shared Task. This offers a rare opportunity to
examine the risks of selecting a subset of systems
for human evaluation by using automatic metrics.
In Fig. 1, we observe that the human rankings pro-
duced by MQM differ enough from the predicted
rankings that they arguably demonstrate exactly
the two types of errors one might be concerned
about making: including a poorer quality system in
human evaluation and, worse, failing to include a
system with substantial confidence interval overlap
with a system that was included for evaluation. In
the first case, our eng→spa system, which was in-
cluded for evaluation, appears substantially worse
than other systems evaluated by MQM (Fig. 1a);
however, we do note that IKUN-C, which could
conceivably bridge the gap, was not included for
evaluation by the Metrics Task, so it is possible
that this does not represent an error. Unfortunately,
without either human evaluation containing both, it
is unlikely we can reach a definitive answer. In the
second case, our jpn→zho system was excluded
from human evaluation by the General MT task but
IKUN-C was included for General MT task evalu-
ation. In Fig. 1b, we can see that there is substan-
tial confidence interval overlap between the MQM
scores for the MSLC jpn→zho system and the
IKUN-C system. We note that there are stronger
ways to more definitively make this comparison
(e.g., to do pairwise significance tests), but we pri-
marily provide these examples for discussion and
consideration. Finally, the eng→deu appears to
represent the successful intended result of this ap-
proach to filtering sytems (Fig. 1c).

This highlights the risks of the mismatches be-
tween automatic evaluation and human evaluation;
it may be better to perform some sort of smaller-
scale initial human evaluation to separate systems
rather than doing so based on automatic metrics.

6 Conclusion

We have built simple Transformer NMT models,
primarily for the purpose of the MSLC dataset at
the Metrics Task. We submit them to the WMT
General Task to enable human evaluation, which
will be useful to better understand how metrics per-
form and compare to human evaluation on a wider
range of MT output quality. Of the three submitted
systems, only one was included for human evalua-
tion in the shared task.

Limitations

As described, we submit extremely simple mod-
els, with minimal additional modifications. As our
focus for MSLC is on news data, we expend only
minimal effort on additional domains. We submit
only three language pairs. We would not recom-
mend the use of these MT systems outside of their
intended uses for metric evaluation in MSLC.

Ethics Statement

We build constrained MT systems, using the per-
mitted training data from WMT24. Since our goal
in this work is to build systems to be used to eval-
uate metrics across a wider range of translation
quality, we expect that these systems may have a
number of problems, including but not limited to:
producing errors in translation, producing output
in dialects (or languages) other than the desired
ones, or otherwise produced biased output. We do
not recommend their use for purposes other than
the intended purpose of MSLC; their limitations
for that purpose are discussed in more depth in the
corresponding Metrics Task submission.

Acknowledgements

We thank the WMT General Task organizers for
their clarifications regarding data for the con-
strained task. We thank the WMT Metrics Task
organizers for including our systems in their MQM
human evaluation, to enable us to use those results
to better understand the performance of automatic
metrics across a range of MT quality.

References

Thamme Gowda. 2024. A tool that locates, downloads,
and extracts machine translation corpora.

Felix Hieber, Michael Denkowski, Tobias Domhan, Bar-
bara Darques Barros, Celina Dong Ye, Xing Niu,
Cuong Hoang, Ke Tran, Benjamin Hsu, Maria Nade-
jde, Surafel Lakew, Prashant Mathur, Anna Cur-
rey, and Marcello Federico. 2022. Sockeye 3: Fast
Neural Machine Translation with PyTorch. arXiv,
abs/2207.05851.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages
74–83, Melbourne, Australia. Association for Com-
putational Linguistics.

https://github.com/thammegowda/mtdata
https://github.com/thammegowda/mtdata
https://doi.org/10.48550/ARXIV.2207.05851
https://doi.org/10.48550/ARXIV.2207.05851
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709


145

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondrej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, Barry Haddow, Marzena
Karpinska, Philipp Koehn, Benjamin Marie, Ken-
ton Murray, Masaaki Nagata, Martin Popel, Maja
Popovic, Mariya Shmatova, Steinþór Steingrímsson,
and Vilém Zouhar. 2024. Preliminary wmt24 ranking
of general mt systems and llms.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab,
Daan van Esch, Nasanbayar Ulzii-Orshikh, Allah-
sera Tapo, Nishant Subramani, Artem Sokolov, Clay-
tone Sikasote, Monang Setyawan, Supheakmungkol
Sarin, Sokhar Samb, Benoît Sagot, Clara Rivera, An-
nette Rios, Isabel Papadimitriou, Salomey Osei, Pe-
dro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, An-
dre Niyongabo Rubungo, Toan Q. Nguyen, Math-
ias Müller, André Müller, Shamsuddeen Hassan
Muhammad, Nanda Muhammad, Ayanda Mnyak-
eni, Jamshidbek Mirzakhalov, Tapiwanashe Matan-
gira, Colin Leong, Nze Lawson, Sneha Kudugunta,
Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaven-
ture F. P. Dossou, Sakhile Dlamini, Nisansa de Silva,
Sakine Çabuk Ballı, Stella Biderman, Alessia Bat-
tisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar,
Israel Abebe Azime, Ayodele Awokoya, Duygu Ata-
man, Orevaoghene Ahia, Oghenefego Ahia, Sweta
Agrawal, and Mofetoluwa Adeyemi. 2022. Quality
at a glance: An audit of web-crawled multilingual
datasets. Transactions of the Association for Compu-
tational Linguistics, 10:50–72.

Samuel Larkin. 2024. A Python Implementation
of Reservoir Sampling. https://github.com/
SamuelLarkin/reservoir_sampling.

Samuel Larkin, Eric Joanis, Darlene Stewart, Michel
Simard, George Foster, Nicola Ueffing, and Aaron
Tikuisis. 2022. Portage Text Processing. https://
github.com/nrc-cnrc/PortageTextProcessing.

Chi-kiu Lo, Samuel Larkin, and Rebecca Knowles.
2023. Metric score landscape challenge (MSLC23):
Understanding metrics’ performance on a wider land-
scape of translation quality. In Proceedings of the
Eighth Conference on Machine Translation, pages
776–799, Singapore. Association for Computational
Linguistics.

Chi-kiu Lo, Michel Simard, Darlene Stewart, Samuel
Larkin, Cyril Goutte, and Patrick Littell. 2018. Ac-
curate semantic textual similarity for cleaning noisy
parallel corpora using semantic machine translation
evaluation metric: The NRC supervised submissions
to the parallel corpus filtering task. In Proceedings
of the Third Conference on Machine Translation:
Shared Task Papers, pages 908–916, Belgium, Brus-
sels. Association for Computational Linguistics.

Arle Richard Lommel, Aljoscha Burchardt, and Hans
Uszkoreit. 2013. Multidimensional quality metrics:
a flexible system for assessing translation quality.
In Proceedings of Translating and the Computer 35,
London, UK. Aslib.

Peter M. Stahl. 2023. The most accurate natural lan-
guage detection library for Python, suitable for short
text and mixed-language text.

Anthony Moi and Nicolas Patry.
2022. HuggingFace’s Tokenizers.
https://github.com/huggingface/tokenizers.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Rachel Wicks and Matt Post. 2021. A unified approach
to sentence segmentation of punctuated text in many
languages. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3995–4007, Online. Association for Computa-
tional Linguistics.

A Portage’s Normalization

Table 4 describes the normalization steps done by
Portage.

B Software Snapshots

For the three additional pieces of software, namely
mtdata (Gowda, 2024), lingua (M. Stahl, 2023),
and reservoir_sampling (Larkin, 2024), snap-
shots from September 24, 2024 are available on
WaybackMachine (http://web.archive.org/),
should their current URLs become unavailable.

• lingua is available at https://github.
com/pemistahl/lingua-py; its snapshot
is available at https://web.archive.
org/web/20240924170712/https:

http://arxiv.org/abs/2407.19884
http://arxiv.org/abs/2407.19884
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://github.com/SamuelLarkin/reservoir_sampling
https://github.com/SamuelLarkin/reservoir_sampling
https://github.com/SamuelLarkin/reservoir_sampling
https://github.com/SamuelLarkin/reservoir_sampling
https://github.com/nrc-cnrc/PortageTextProcessing
https://github.com/nrc-cnrc/PortageTextProcessing
https://github.com/nrc-cnrc/PortageTextProcessing
https://doi.org/10.18653/v1/2023.wmt-1.65
https://doi.org/10.18653/v1/2023.wmt-1.65
https://doi.org/10.18653/v1/2023.wmt-1.65
https://doi.org/10.18653/v1/W18-6481
https://doi.org/10.18653/v1/W18-6481
https://doi.org/10.18653/v1/W18-6481
https://doi.org/10.18653/v1/W18-6481
https://doi.org/10.18653/v1/W18-6481
https://aclanthology.org/2013.tc-1.6
https://aclanthology.org/2013.tc-1.6
https://github.com/pemistahl/lingua-py
https://github.com/pemistahl/lingua-py
https://github.com/pemistahl/lingua-py
https://github.com/huggingface/tokenizers
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2021.acl-long.309
https://doi.org/10.18653/v1/2021.acl-long.309
https://doi.org/10.18653/v1/2021.acl-long.309
http://web.archive.org/
https://github.com/pemistahl/lingua-py
https://github.com/pemistahl/lingua-py
https://web.archive.org/web/20240924170712/https://github.com/pemistahl/lingua-py/archive/refs/tags/v2.0.2.tar.gz
https://web.archive.org/web/20240924170712/https://github.com/pemistahl/lingua-py/archive/refs/tags/v2.0.2.tar.gz


146

Textual Description Code
Convert various non-breaking hyphens to − [\u001E\u00AD\u2011] → −
Strip out the MS Word discretional hyphen \x1F

Replace special purpose spaces by regular spaces [\u2060\uFEFF\u00A0\u2007\u202F\u2028\u2029] → ⊔
Replace remaining control characters by spaces [\x01− \x09\x0B\x0C\x0E − \x1F\x7F ] → ⊔

convert DOS newlines to Linux ones \x0d
Collapse multiple spaces to a single space \s+ → ⊔

Table 4: Portage normalizations

//github.com/pemistahl/lingua-py/
archive/refs/tags/v2.0.2.tar.gz

• reservoir_sampling is available at
https://github.com/SamuelLarkin/
reservoir_sampling; its snapshot is
available at https://web.archive.org/
web/20240924170941/https://github.
com/SamuelLarkin/reservoir_sampling/
archive/refs/tags/0.1.tar.gz

• mtdata is available at https://github.
com/thammegowda/mtdata; its snapshot
is available at https://web.archive.
org/web/20240924171242/https:
//github.com/thammegowda/mtdata/
archive/refs/tags/v0.4.1.tar.gz

https://web.archive.org/web/20240924170712/https://github.com/pemistahl/lingua-py/archive/refs/tags/v2.0.2.tar.gz
https://web.archive.org/web/20240924170712/https://github.com/pemistahl/lingua-py/archive/refs/tags/v2.0.2.tar.gz
https://web.archive.org/web/20240924170712/https://github.com/pemistahl/lingua-py/archive/refs/tags/v2.0.2.tar.gz
https://web.archive.org/web/20240924170712/https://github.com/pemistahl/lingua-py/archive/refs/tags/v2.0.2.tar.gz
https://github.com/SamuelLarkin/reservoir_sampling
https://github.com/SamuelLarkin/reservoir_sampling
https://web.archive.org/web/20240924170941/https://github.com/SamuelLarkin/reservoir_sampling/archive/refs/tags/0.1.tar.gz
https://web.archive.org/web/20240924170941/https://github.com/SamuelLarkin/reservoir_sampling/archive/refs/tags/0.1.tar.gz
https://web.archive.org/web/20240924170941/https://github.com/SamuelLarkin/reservoir_sampling/archive/refs/tags/0.1.tar.gz
https://web.archive.org/web/20240924170941/https://github.com/SamuelLarkin/reservoir_sampling/archive/refs/tags/0.1.tar.gz
https://github.com/thammegowda/mtdata
https://github.com/thammegowda/mtdata
https://web.archive.org/web/20240924171242/https://github.com/thammegowda/mtdata/archive/refs/tags/v0.4.1.tar.gz
https://web.archive.org/web/20240924171242/https://github.com/thammegowda/mtdata/archive/refs/tags/v0.4.1.tar.gz
https://web.archive.org/web/20240924171242/https://github.com/thammegowda/mtdata/archive/refs/tags/v0.4.1.tar.gz
https://web.archive.org/web/20240924171242/https://github.com/thammegowda/mtdata/archive/refs/tags/v0.4.1.tar.gz

