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Abstract

We develop a robust translation model for four
low-resource Indic languages: Khasi, Mizo,
Manipuri, and Assamese. Our approach in-
cludes a comprehensive pipeline from data
collection and preprocessing to training and
evaluation, leveraging data from WMT task
datasets, BPCC, PMIndia, and OpenLanguage-
Data. To address the scarcity of bilingual data,
we use back-translation techniques on monolin-
gual datasets for Mizo and Khasi, significantly
expanding our training corpus. We fine-tune the
pre-trained NLLB 3.3B model for Assamese,
Mizo, and Manipuri, achieving improved per-
formance over the baseline. For Khasi, which
is not supported by the NLLB model, we intro-
duce special tokens and train the model on our
Khasi corpus. Our training involves masked
language modelling, followed by fine-tuning
for English-to-Indic and Indic-to-English trans-
lations.

1 Introduction

Translation of low-resource languages poses sig-
nificant challenges in natural language process-
ing. While substantial progress has been made
in developing machine translation models for high-
resource languages, low-resource languages often
suffer from a lack of parallel corpora and digital
resources (Haddow et al., 2022). Languages like
Khasi, Mizo, Manipuri, and Assamese are repre-
sentative of this challenge, where limited data and
unique linguistic complexities hinder the develop-
ment of robust translation systems.

In recent years, efforts to bridge this gap have
gained momentum, driven by initiatives such as the
Bharat Parallel Corpus Collection1 (BPCC) (Gala
et al., 2023) and government-supported projects
like PMIndia (Haddow and Kirefu, 2020), which
aim to provide bilingual data for Indic languages.

1https://ai4bharat.iitm.ac.in/bpcc/

Despite these efforts, translation models for low-
resource Indic languages have yet to achieve per-
formance levels comparable to their high-resource
counterparts (Suman et al., 2023), necessitating
innovative approaches to model training and data
utilization.

In this work, we develop a robust transla-
tion model for four low-resource Indic languages:
Khasi, Mizo, Manipuri, and Assamese. Our ap-
proach involves data collection, preprocessing,
training, and evaluation. We utilize datasets
from WMT, BPCC, PMIndia, and OpenLanguage-
Data2 (Maillard et al., 2023), and enhance bilingual
data through back-translation (Edunov et al., 2018)
techniques, especially for Mizo and Khasi, signifi-
cantly expanding our training corpus.

We follow Meta’s data preprocessing standards
and use LoRA (Low-Rank Adaptation) (Hu et al.,
2021) fine-tuning on the NLLB (et al., 2022) 3.3B
model to improve efficiency and performance with
fewer parameters. Our model initially focuses on
one-way translation from English to the Indic lan-
guages, then on reverse translations (Dabre et al.,
2019). The results show improved performance
over the baseline, particularly for Khasi, where we
address gaps in pre-trained model support.

2 Dataset

In this study, we focus on four low-resource Indic
languages covered in the Low Resource Indic Lan-
guages Shared Task: Khasi, Mizo, Manipuri, and
Assamese. This section highlights the significance
of each language, including their role in their re-
spective regions, their linguistic and cultural impor-
tance, and the details of the datasets used. Statistics
regarding language speakers are according to the
2011 Indian Census3.

2https://github.com/openlanguagedata/seed
3https://censusindia.gov.in/
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Language ISO-693-3 WMT Parallel BPCC PMIndia OLD Back-Translated Total
Assamese asm 50,000 35,354 9,732 0 0 95,086
Manipuri mni 21,687 0 7,419 6,193 0 35,036
Khasi kha 24,000 0 0 0 102,070 126,070
Mizo lus 50,000 0 0 0 30,164 80,164

Table 1: Breakdown of data sources and volumes for each language. "OLD" refers to OpenLanguageData. The
"Back-Translated" data was initially generated using Google Translate4 for the first 500k characters from the
monolingual WMT task data, with subsequent iterations increasing the data size using the trained model.

2.1 Languages

Assamese (Asamiya) is an Indo-Aryan language
spoken primarily in the northeastern Indian state
of Assam, where it serves as an official language
and a regional lingua franca. With over 15 million
native speakers, it is one of the most widely spoken
languages in the region. Historically, Assamese
was the court language of the Ahom kingdom. It is
written in the Assamese script, an abugida system,
known for its unique typographic ligatures.

Manipuri (Meiteilon) is a key Tibeto-Burman
language spoken mainly in Manipur, India, where
it is an official language and it is one of the
constitutionally scheduled official languages of the
Indian Republic. With 1.76 million speakers, it is
the most widely spoken Tibeto-Burman language
in India and holds the third place among the
fastest-growing languages of India, following
Hindi and Kashmiri. It is written in its own Meitei
script as well as the Bengali script.

Khasi (Ka Ktien Khasi) is an Austroasiatic
language primarily spoken by the Khasi people in
Meghalaya, India, with approximately 1 million
native speakers as of the 2011 census. The
language holds an associate official status in
certain districts of Meghalaya. Khasi is written in
the Latin script. The closest relatives of Khasi are
other languages in the Khasic group, such as Pnar
and War.

Mizo (Mizo t.awng) belonging to the Sino-Tibetan
language family, is primarily spoken in the state
of Mizoram, India, with around 800 thousand
speakers. The Mizo language, also known as
Lushai, has a rich oral history and was first written
using the Latin script in the late 19th century. Mizo
is recognized as the official language of Mizoram
and is used in education, government, and media.

3 Methodology

This section covers the preprocessing steps and
training methods used, including dataset prepa-
ration and the fine-tuning of Meta’s multilingual
NLLB 3.3B base pre-trained model. Detailed statis-
tics on data distribution are presented in Table 1.

3.1 Preprocessing
In the preprocessing phase, we followed a series of
steps to ensure the text data was clean and consis-
tent before model training. We began by normaliz-
ing punctuation using Moses (Koehn et al., 2007),
an open-source toolkit designed for preprocessing,
training, and testing translation models. This step
helps maintain consistency in text data, which is
crucial for training robust models.

Non-printable characters, which often interfere
with text processing, were replaced with a space.
This choice ensures that any invisible or non-
standard characters do not disrupt the tokenization
process and ensures that the text is composed of
standard printable characters.

We also applied Unicode normalization (NFKC)
to transform characters into their canonical forms,
making the text more uniform across different Uni-
code representations.

These preprocessing steps are aligned with those
outlined by Meta for their multilingual models, and
further details can be found on their GitHub5. This
approach ensures that the text data used for train-
ing is clean, consistent, and compatible with the
modelling requirements.

3.2 Training
For model training, we employed Meta’s NLLB
(No Language Left Behind) 3.3B parameter model,

4https://google.translate.com/
5https://github.com/facebookresearch/

stopes/blob/main/stopes/pipelines/monolingual/
monolingual_line_processor.py

https://google.translate.com/
https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py
https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py
https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py
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a state-of-the-art multilingual machine translation
model built to support over 200 languages, mak-
ing it ideal for tasks involving low-resource lan-
guages (Tran et al., 2021; Yang et al., 2021).
The NLLB 3.3B model is based on a Trans-
former (Vaswani et al., 2023) architecture with
3.3 billion parameters, featuring a dense encoder-
decoder design. It includes the following hyperpa-
rameters:

Hyperparams
embed size 2048
ffn size 8192
attn heads 16
enc/dec layers 48

Table 2: Hyperparameters for the baseline pre-trained
model. 24 Encoder and 24 Decoder Layers.

To fine-tune the model, we employed LoRA, a
technique that significantly reduces computational
demands and training time by adapting only a small
subset of the model’s parameters. LoRA has been
shown to match the performance of traditional fine-
tuning methods while reducing the number of train-
able parameters by a factor of 50 (Alves et al.,
2023). This approach is especially effective for
large-scale models like Meta’s NLLB 3.3B, allow-
ing efficient adaptation without significantly com-
promising on performance.

3.3 Parameters
The training process was conducted in three stages:
first, the model was trained on masked language
modelling (Devlin et al., 2019) to enhance its under-
standing of the target language by leveraging mono-
lingual data. Next, it was fine-tuned for English-to-
Indic translations, followed by further fine-tuning
for Indic-to-English translations. In the case of
Khasi, which was not natively supported by the
NLLB model, special tokens were added to the
tokenizer’s vocabulary to accommodate the Khasi
language. The model was subsequently trained on
the Khasi corpus to ensure proper handling and
integration of this language.

The training was performed across 4 Nvidia
A6000 GPUs. These settings allowed us to op-
timize the model’s performance while managing
computational efficiency.

3.4 Inference
For inference, the trained adapter was loaded onto
the NLLB 3.3B model. The model generated

Training Args
optimizer adafactor
learning Rate 1e-5
epochs 8
precision bf16
pmask 0.15
peft type lora
rank 128
lora alpha 256
lora dropout 0.1
target modules all linear

Table 3: Training parameters and LoRA configuration
used for fine-tuning the NLLB 3.3B model.

predictions using a beam search strategy with 10
beams and a repetition penalty of 2.5 to improve
the diversity and quality of the translations. We
experimented with various beam and penalty con-
figurations, ultimately finding that this particular
setup produced the most accurate and linguistically
coherent outputs.

4 Results

The evaluation of our translation model across var-
ious language pairs and directions is shown in
Table 4, with performance assessed using BLEU
(Papineni et al., 2002), Translation Error Rate
(Snover et al., 2006), RIBES (Isozaki et al., 2010),
METEOR (Banerjee and Lavie, 2005), and chrF
(Popović, 2015) metrics. We found that the scores
in English-to-Manipuri and English-to-Mizo direc-
tion suffered from the poor quality of backtrans-
lated data used in our training.
English-Assamese The model performed relatively
well, with BLEU scores of 27.26 for English-to-
Assamese and 26.69 for Assamese-to-English.
English-Manipuri The model showed lower
BLEU scores for English-to-Manipuri (2.7) com-
pared to Manipuri-to-English (20.88). The TER
score was higher for English-to-Manipuri, reflect-
ing greater translation errors in this direction.
English-Khasi For Khasi, the BLEU score was
12.12 for English-to-Khasi and 10.47 for Khasi-to-
English.
English-Mizo The performance was mixed, with a
BLEU score of 6.6 for English-to-Mizo and 18.49
for Mizo-to-English. The TER score indicates a
higher error rate for English-to-Mizo, while the
METEOR and ChrF scores were relatively bal-
anced across both directions.
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Language Pairs Test Set BLEU TER RIBES METEOR ChrF
English-Assamese en_to_as_contrastive 27.26 52.79 0.3032 0.513 65.2

as_to_en_contrastive 26.69 39.08 0.3308 0.7066 60.48
English-Manipuri en_to_mn_contrastive 2.7 84.6 0.1185 0.1567 44.28

mn_to_en_contrastive 20.88 48.77 0.3031 0.61 53.64
English-Khasi en_to_kh_contrastive 12.12 63.31 0.1864 0.4453 44.55

kh_to_en_contrastive 10.47 61.43 0.2172 0.5042 42.71
English-Mizo en_to_mz_contrastive 6.6 66.06 0.1746 0.495 49.79

mz_to_en_contrastive 18.49 53.19 0.2684 0.588 50.44

Table 4: Translation performance metrics of our MT System reported in the final evaluation.

5 Conclusion

In this work, we utilized Meta’s NLLB 3.3B model,
a large-scale multilingual transformer with 3.3 bil-
lion parameters, to enhance translation between
low-resource Indic languages and English. The
training process included masked language mod-
elling, followed by English-to-Indic and Indic-to-
English translations. Special tokens were added
for Khasi, and LoRA (Low-Rank Adaptation) was
employed to optimize computational efficiency and
reduce training time.
Conducted on 4 NVIDIA A6000 GPUs, our ap-
proach demonstrates that large-scale multilingual
models, when combined with LoRA, effectively
capture diverse linguistic patterns and advance
translation capabilities.

6 Limitations

In this study, we encountered several limitations
that impacted the overall effectiveness of our trans-
lation system. One major challenge was the con-
strained size of our dataset due to computational
resource limitations. The limited dataset size may
have hindered the model’s ability to generalize, par-
ticularly for low-resource languages where larger
and more diverse datasets would have been advan-
tageous.

Another issue we faced was the quality of back-
translated data. The process of augmenting the
dataset through machine translation often resulted
in lower-quality data, which negatively influenced
the model’s performance. This highlights the need
for more robust data generation techniques in fu-
ture work.

We also observed a noticeable performance gap
between translations where English was the tar-
get language and those where an Indic language
was the target. This suggests that while the model
may understand the morphological aspects of Indic

languages, it struggles to generate accurate trans-
lations in these languages. This limitation under-
scores the need for further refinement in handling
the complexities of Indic language generation.

Finally, the potential domain mismatch between
our training data and real-world applications posed
a significant challenge. The training data may not
fully capture the linguistic and contextual nuances
found in practical scenarios, leading to reduced
performance in actual use cases. Addressing this
issue in future work will be crucial for improving
the model’s real-world applicability.
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