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Abstract

Machine Translation for low-resource lan-
guages poses significant challenges, primar-
ily due to the limited availability of data.The
WMT24 Low-Resource Indic Neural Machine
Translation task challenges us to employ inno-
vative techniques to improve machine transla-
tion for low-resource Indian languages. Our
proposed solution leverages advancements
in neural machine translation, focusing on
methodologies such as back-translation and
fine-tuning. By fine-tuning pretrained models
like mBART, we achieved significant progress
in translating languages such as Manipuri and
Khasi. The best score was achieved for the
English-to-Khasi (en-kh) primary model, with
the highest BLEU score of 0.0492, chrF score
of 0.3316, and METEOR score of 0.2589 (on
scale of 0 to 1) and comparable scores for other
language pairs.

1 Introduction

Machine translation is a sub-field of computational
linguistics that focuses on developing systems ca-
pable of automatically translating text or speech
from one language to another. The WMT24 task
enables us to perform machine translation on those
languages which are considered low-resource that
is with limited data availability due to their lesser
prevalence or documentation. Our work focuses
on translating the ‘En-X’ language pair in both
directions, where ‘En’ stands for English and ‘X’
includes Manipuri, a Tibeto-Burman language, and
Khasi, which belongs to the Austroasiatic language
family.

In recent years, Neural Machine Translation
(NMT) has emerged as a powerful approach within
machine translation, leveraging deep learning to
achieve state-of-the-art results. Although, the NMT
models being the data-hungry lead to peformance
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degradation when it comes to low resource lan-
guages. To tackle this problem, we employed fine-
tuning and utilised the mBART (mbart-large-50-
many-to-many-mmt) (Tang et al., 2020) experi-
menting with different configurations and settings
for both preprocessing and training. mBART (Liu
et al., 2020) is a multilingual sequence-to-sequence
model trained on extensive monolingual datasets
using a denoising autoencoder approach. It builds
on the BART framework (Lewis et al., 2019) by
combining a bidirectional encoder with a left-to-
right autoregressive decoder, making it suitable for
various translation tasks across multiple languages.
Even if most of our final systems did not reach a
satisfactory or competitive performance, we argue
that our experiments brought up some interesting
points that deserve more attention.

2 Related Work

In a comprehensive study, (Gaikwad et al., 2023)
examined fine-tuning-based techniques to improve
translation capabilities for low-resource languages
by harnessing the multilingual IndicTrans2 model
and achieved significant results.

In 2023, (Suman et al., 2023) utilized In-
dicBART (Dabre et al., 2022) and mBART-large-
50, adapting them to specific language pairs and
this method led to substantial performance gains
for the Assamese and Manipuri languages.

Another 2023 study, (Jha et al., 2023), proposed
and evaluated a multilingual neural machine trans-
lation system for Indian languages using the mT5
transformer. This system, trained on the modified
Asian Language Treebank (ALT) dataset, demon-
strated strong performance in translations between
English, Hindi, and Bengali, achieving BLEU
scores above 20 for five out of the six language
pairs.

(Saini and Vidhyarthi, 2023) evaluated various
pretrained models for English-to-Marathi trans-
lation, developing a bidirectional system. The
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findings indicated that fine-tuning significantly en-
hanced the mBART model’s performance.

(Signoroni and Rychly, 2023) addressed the chal-
lenges of neural machine translation (NMT) for
low-resource language pairs by using supervised
NMT systems. They experimented with different
configurations and settings for both preprocessing
and training, delving into the complexities of trans-
lating these languages.

3 Dataset

3.1 Languages

Manipuri, also known as Meitei or Meiteilon, is
predominantly spoken in the northeastern Indian
state of Manipur and is one of India’s 22 scheduled
languages having about 1.8 million native speakers
(Signoroni and Rychly, 2023). It is distinguished
by its rich morphological features, including a com-
plex phonological system with tones, an aggluti-
native structure, and a Subject-Object-Verb (SOV)
word order, as shown in Figure1. As a tonal lan-
guage, Manipuri uses various tones and pronunci-
ations to convey meaning and employs primarily
two scripts: Meitei and Bengali. Despite being a
scheduled language, Manipuri is often considered a
low-resource language in natural language process-
ing, presenting valuable opportunities for transfer
learning and the development of multilingual mod-
els.
Khasi primarily spoken in the northeastern Indian
state of Meghalaya by the Khasi people, is one
of the major languages of the region spoken by
over 1 million individuals (Signoroni and Rychly,
2023). Belonging to the Austroasiatic language
family, Khasi is more commonly written using the
Latin alphabet. Structurally, Khasi typically fol-
lows a subject-verb-object (SVO) order, similar to
English, but differs from most Indian languages,
which generally use a subject-object-verb (SOV)
order, as shown in Figure 1.

Figure 1: Translations of "The boy eats an apple" show-
ing word order in Manipuri and Khasi.

3.2 Composition

In this study, we used WMT 2024 (Pal et al., 2023)
(Kakum et al., 2023) to fine-tune which includes

both bilingual and monolingual data. For the bilin-
gual data, we used the language pairs English-
Khasi (en ↔ kh) and English-Manipuri (en ↔ mn).
The compositions of these datasets are presented
in Table 1 and 2.

Lang. Pair Train Test Validation Monolingual
en ↔ kh 24,000 1000 1000 182,737
en ↔ mn 21,687 1000 1000 2,144,897

Table 1: Number of lines in the dataset for the language
pairs used in the task. The Monolingual column refers
to the size of the non-English side.

Lang. Pair Type:Token Ratio Avg. Sentence Length
en ↔ kh 0.019 (en) 30.41 tokens (en)

0.0093 (kh) 36.48 tokens (kh)
en ↔ mn 0.0573 (en) 18.02 tokens (en)

0.0083 (mn) 15.23 tokens(mn)

Table 2: Training Dataset Statistics for Language Pairs:
Type-Token Ratio and Average Sentence Length

4 System Overview

4.1 Initial Fine-Tuning

We begin by fine-tuning the mBART model (mbart-
large-50-many-to-many-mmt) for the language
pairs: English to Khasi (en → kh), Khasi to En-
glish (kh → en), English to Manipuri (en → mn),
and Manipuri to English (mn → en). To ensure
the quality and consistency of the bilingual data,
we perform several preprocessing steps, including
the removal of HTML tags, invisible characters,
newline tabs, and duplicate entries.

For machine translation preparation, we tokenize
both the input and the target texts. Truncating
techniques are applied to standardize the texts by
setting the maximum length of the tokenized se-
quences to 512 tokens. This ensures uniformity
across all the examples in the dataset. This serves
as our baseline model.

4.2 Data Augmentation

4.2.1 Backtranslation

A back-translation strategy (Sennrich et al., 2016)
is employed to augment the training dataset with
more data. Specifically, we back-translate 100,000
monolingual Khasi and Manipuri sentences into
English using the baseline model. However, it is
likely that the backtranslated data contains a signifi-
cant portion of low-quality translations. To remove
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Lang. Pair Filtered Data
kh ↔ en 534
mn ↔ en 662

Table 3: Count of high-quality sentence pairs after
cosine similarity filtering (threshold 0.84) for Khasi-
English (kh ↔ en) and Manipuri-English (mn ↔ en).

low-quality data and ensure high-quality transla-
tion pairs, we employ a filtering process using the
LaBSE model and cosine similarity.

4.2.2 Data Filtering
LaBSE Fine-tuning The Language-agnostic
BERT Sentence Embedding (LaBSE) model (Feng
et al., 2022) is not originally trained in the Khasi or
Manipuri languages. Therefore, to generate accu-
rate sentence embeddings for these language pairs,
we fine-tune the LaBSE model specifically for en
↔ kh and en ↔ mn pairs, despite the limited size
of available bilingual data. This fine-tuned model is
then employed to produce sentence embeddings for
the back-translated Khasi-English and Manipuri-
English pairs.

Embedding and Similarity Calculation To en-
sure the accuracy of the back-translated data, we
use cosine similarity, a metric that measures the
cosine of the angle between two vectors in mul-
tidimensional space, to compare sentence embed-
dings. We apply a threshold of 0.84, effectively
filtering out low-quality translations, and retaining
only those pairs that meet our quality standards.
Consequently, only a small portion of the original
100,000 back-translated sentences remain after fil-
tering using this threshold. The data retained after
filtering are presented in Table 3.

4.2.3 Further Filtering and cleaning
Despite filtering, some sentences with continuous
symbols or non-English characters remain. To ad-
dress this, we conduct an additional data cleaning
round, removing sentences with continuous sym-
bols and residual Manipuri or Khasi words in the
English translations. The cleaned data is then com-
bined with the original training set to create the
augmented dataset as the final dataset.

4.3 Training with Augmented Data

Subsequently, we fine-tune the mBART model
(mbart-large-50-many-to-many-mmt) using the
augmented dataset, which includes both the orig-
inal training data and the filtered back-translated

data. The same data-preprocessing steps are em-
ployed for the augmented dataset as applied for the
baseline model to maintain uniformity. The fine-
tuning process incorporates this augmented data to
enhance the model’s performance and robustness.

5 Results and Analysis

Table 4 shows WMT24 evaluation results, high-
lighting a more challenging test set compared to
last year. The low average semantic similarity
score of 0.0253 as found using the (Reimers and
Gurevych, 2019) sentence-transformer model that
maps sentences to a 384 dimensional dense vector
space to calculate semantic similarity between train
and test data indicating reduced model performance
too.

Among the primary models, the English-to-
Khasi (en → kh) model, trained on both original
and filtered back-translated data, performed the
best across most metrics. It achieved the highest
BLEU score of 0.0492, a chrF score of 0.3316,
and a METEOR score of 0.2589, indicating strong
performance for this language pair. The high chrF
score shows effective capture of character-level
nuances, while the lowest TER score of 84.79 re-
flects fewer required edits to match reference trans-
lations.

It is important to note that the Khasi-to-English
(kh-en) primary model is excluded from this eval-
uation because of issues encountered during the
evaluation process. Meanwhile, the English-to-
Manipuri (en → mn) model shows a BLEU score
of 0, highlighting the difficulty in translating from
English to Manipuri. This may be partly due to
the smaller size of the training data for this pair
compared to the en-kh pair. Despite some fluctu-
ations, the overall performance of both models is
comparable in the test data.

When considering all metrics, the primary
model shows slight improvements over the base-
line model, indicating that the additional filtered
back-translated data enhanced translation quality.
However, the baseline model also performs compet-
itively. The filtered back-translated data includes
only 534 sentences for the kh ↔ en pair and 662 for
the mn ↔ en pair (Table 3), with the small dataset
likely due to stringent filtering.

Table 5 shows that the primary model slightly
outperforms the baseline model in BLEU, chrF, and
TER metrics for the English-to-Khasi (en → kh)
and English-to-Manipuri (en → mn) models, sug-
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Lang. Pair BLEU (↑) chrF (↑) TER (↓) METEOR (↑) RIBES (↑)
Baseline

en-kh 0.0359 0.2333 103.49 0.1649 0.1106
kh-en 0.0060 0.1731 106.60 0.1020 0.0487
en-mn 0.0064 0.3191 96.46 0.0724 0.0628
mn-en 0.0484 0.2662 101.76 0.1940 0.1087

Primary
en-kh 0.0492 0.3316 84.79 0.2589 0.1595
en-mn 0.0000 0.3325 94.77 0.0822 0.0737
mn-en 0.0362 0.2777 94.79 0.1873 0.1136

Table 4: Results of Primary and Baseline models evaluated on WMT24 evaluation test data (scores calculated on the
scale from 0 to 1)

Lang. Pair BLEU (↑) chrF (↑) TER (↓)
Baseline

en-kh 0.1748 0.3964 0.75699
kh-en 0.1274 0.3566 0.8791
en-mn 0.2089 0.5676 0.6537
mn-en 0.3265 0.5709 0.6522

Primary
en-kh 0.1867 0.4126 0.7275
kh-en 0.1234 0.3570 0.8845
en-mn 0.2097 0.5726 0.6495
mn-en 0.3224 0.5698 0.6483

Table 5: Results of Baseline and Primary models evaluated on WMT23 validation data (scores calculated on the
scale from 0 to 1)

gesting that filtered back-translated data improves
translation quality. However, for the Khasi-to-
English (kh → en) and Manipuri-to-English (mn →
en) models, the primary model experiences a slight
performance drop. This decrease is likely due to the
filtered back-translated English sentences lacking
coherence and contextual appropriateness, which
affects the model’s effectiveness. Despite these
variations, the primary model still performs slightly
better than the baseline model when considering
all metrics.

6 Conclusion

Improving machine translation for low-resource
languages remains a critical focus in the field. In
this paper, we develop a system for translating low-
resource Indic languages, specifically Manipuri
and Khasi, in both English-to-Indic and Indic-to-
English language pairs. We use back-translation
and then apply cosine similarity for data filtering.
While effective, their success depends on the qual-
ity of the back-translation and fine-tuned LaBSE
models.

The morphological complexity of the Indic lan-
guages along with inability of capturing cultural
and context specific meanings also poses as a chal-
lenge which the model could not solve. We further
encounter challenges including data scarcity and

high computational requirements which we believe
can help produce better results.

7 Future Work

For future work, we aim to focus on enhancing
machine translation for low-resource languages
by leveraging language-specific properties such as
part-of-speech (POS) tags and dependency pars-
ing. By integrating POS tagging one can enable
the model to better understand the syntactic roles
of words, leading to more accurate and contex-
tually appropriate translations. Dependency pars-
ing can also capture the grammatical structure and
relationships between words, allowing the model
to manage complex sentence structures more ef-
fectively. Additionally, the use of more filtered
backtranslated data can provide a richer training
dataset, further improving translation quality. Com-
bining these linguistic techniques with extensive
backtranslation, so that we can capture the nuances
of the individual low-resource languages, we can
significantly address the current challenges in ma-
chine translation.

References
Raj Dabre, Himani Shrotriya, Anoop Kunchukuttan,

Ratish Puduppully, Mitesh Khapra, and Pratyush Ku-
mar. 2022. IndicBART: A pre-trained model for indic

https://doi.org/10.18653/v1/2022.findings-acl.145


755

natural language generation. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1849–1863, Dublin, Ireland. Association for
Computational Linguistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
bert sentence embedding.

Pranav Gaikwad, Meet Doshi, Sourabh Deoghare, and
Pushpak Bhattacharyya. 2023. Machine translation
advancements for low-resource Indian languages in
WMT23: CFILT-IITB’s effort for bridging the gap.
In Proceedings of the Eighth Conference on Machine
Translation, pages 950–953, Singapore. Association
for Computational Linguistics.

Abhinav Jha, Hemprasad Yashwant Patil, Sumit Kumar
Jindal, and Sardar M N Islam. 2023. Multilingual
indian language neural machine translation system
using mt5 transformer. In 2023 2nd International
Conference on Paradigm Shifts in Communications
Embedded Systems, Machine Learning and Signal
Processing (PCEMS), pages 1–5.

N. Kakum, S.R. Laskar, K. Sambyo, and et al. 2023.
Neural machine translation for limited resources
english-nyishi pair. Sādhanā, 48:237.
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