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Abstract

The WMT24 Metrics Shared Task evaluated
the performance of automatic metrics for ma-
chine translation (MT), with a major focus on
LLM-based translations that were generated as
part of the WMT24 General MT Shared Task.
As LLMs become increasingly popular in MT,
it is crucial to determine whether existing eval-
uation metrics can accurately assess the output
of these systems.

To provide a robust benchmark for this eval-
uation, human assessments were collected us-
ing Multidimensional Quality Metrics (MQM),
continuing the practice from recent years. Fur-
thermore, building on the success of the previ-
ous year, a challenge set subtask was included,
requiring participants to design contrastive test
suites that specifically target a metric’s abil-
ity to identify and penalize different types of
translation errors.

Finally, the meta-evaluation procedure was re-
fined to better reflect real-world usage of MT
metrics, focusing on pairwise accuracy at both
the system- and segment-levels.

We present an extensive analysis on how
well metrics perform on three language
pairs: English→Spanish (Latin America),
Japanese→Chinese, and English→German.
The results strongly confirm the results reported
last year, that fine-tuned neural metrics con-
tinue to perform well, even when used to evalu-
ate LLM-based translation systems.

1 Introduction

The Metrics Shared Task1 has been a key compo-
nent of WMT since 2008, serving as a way to val-
idate the use of automatic MT evaluation metrics
and drive the development of new metrics. We eval-
uate reference-based automatic metrics that score
MT output by comparing the translations with a

1https://www2.statmt.org/wmt24/
metrics-task.html

metric avg corr

MetaMetrics-MT 1 0.725
MetricX-24-Hybrid 1 0.721
XCOMET 1 0.719
MetricX-24-Hybrid-QE* 2 0.714
gemba_esa* 2 0.711
XCOMET-QE* 3 0.695
COMET-22 3 0.688
BLEURT-20 3 0.686
MetaMetrics-MT-QE* 3 0.684
bright-qe* 4 0.681
BLCOM_1 4 0.664
sentinel-cand-mqm* 5 0.650
PrismRefMedium 5 0.646
PrismRefSmall 5 0.642
CometKiwi* 5 0.640
damonmonli 5 0.635
YiSi-1 6 0.630
BERTScore 7 0.617
MEE4 7 0.609
chrF 8 0.608
chrfS 8 0.606
spBLEU 9 0.593
BLEU 9 0.589
XLsimMqm* 10 0.515
sentinel-src-mqm* 10 0.513
sentinel-ref-mqm 10 0.513

Table 1: Official ranking of primary submissions to the
WMT24 Metric Task. The final score is the weighted av-
erage correlation over 6 different tasks. Starred metrics
are reference-free, and underlined metrics are baselines.
See Table 14 for the pairwise comparisons from which
the ranks were derived.

reference translation generated by human transla-
tors, who are instructed to translate “from scratch”
without post-editing from MT. In addition, we also
invited submissions of reference-free metrics (qual-
ity estimation metrics or QE metrics) that compare
MT outputs directly with the source segments. All
metrics are evaluated based on their agreement with
human ratings when scoring MT systems and hu-
man translations at the system and sentence level.

https://www2.statmt.org/wmt24/metrics-task.html
https://www2.statmt.org/wmt24/metrics-task.html
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The final ranking of this year’s submitted primary
metrics is shown in Table 1. Below are some of
the key details and changes implemented for this
year’s Metrics Shared Task:

• Language Pairs: For this year, we fo-
cus on three language pairs, all on the
paragraph-level: (i) English→German (en→de),
English→Spanish (Latin America) (en→es), and
Japanese→Chinese (ja→zh).

• Human Evaluation: Like last year, we collected
our own human quality ratings for our three lan-
guage pairs leveraging professional translators
performing MQM annotations (Lommel et al.,
2014; Freitag et al., 2021). We released and up-
loaded2 all MQM annotations, and we recom-
mend using Marot3 for looking into this data.

• Meta Evaluation: This year, we designed the
meta-evaluation to evaluate metrics on how they
are used in practice, by focusing on pairwise
accuracy at the system- and segment-levels and
removing Pearson correlation. At the system-
level, we use a new statistic called soft pairwise
accuracy (Thompson et al., 2024), and, like last
year, we use pairwise accuracy with tie calibra-
tion (Deutsch et al., 2023) at the segment-level.

• Challenge Sets Subtask: The submission for-
mat of the challenge sets changed to provide for
more flexibility on how the participants could
challenge the metrics. In contrast to previous
years, when the challenge items were evaluated
in a rigid pairwise manner on whether the met-
ric scores can distinguish between a good and
a bad translation, this year’s participants could
provide single translations and then employ an
evaluation concept of their own. This year’s sub-
task features 4 submissions that test the ability
of the metrics to evaluate MT outputs on African
languages, the biomedical domain, on more than
a hundred linguistically-motivated phenomena,
as well as on low- to mid-quality outputs and
specific challenges (empty strings, wrong/mixed
language output and language variants).

• Understand Magnitude of Score Difference:
Similar to last year, we include two analyses to
understand the meaning of the score differences

2https://github.com/google/
wmt-mqm-human-evaluation

3https://github.com/google-research/
google-research/tree/master/marot

that metrics present with respect to the statistical
significance of MT system rankings according
to human annotations and metric scores. These
analyses provide additional assistance for MT re-
searchers to build an intuition on the relationship
between the magnitude of metric score differ-
ences and the reliability of the improved transla-
tion quality.

• MTME: Similar to last year, all the data has been
uploaded to MTME4, and all results in this pa-
per are calculated with this analysis tool. We
encourage every metric developer to use MTME
to calculate contrastive scores to enhance consis-
tency and comparability going forward.

Our main findings are:

• Two metametrics (which are both ensemble
metrics), MetricX-24-Hybrid and XCOMET,
are the winners of the WMT24 Metrics Shared
Task (Table 1);

• Fine-tuned neural metrics continue to be
strong in performance and are effective quality
estimators, even for LLM-based translations;

• Results from the challenge sets independently
suggest that it is important for metric re-
searchers to test the performance of metrics
in diverse collections of linguistic phenom-
ena, languages and domains, including low-
resource languages, mixed languages and ir-
regular outputs, and on a wide range of trans-
lation quality, in order to minimize anomalous
and unexpected behaviours of metrics (Sec-
tion 9).

The rest of the paper is organized as follows: Sec-
tion 2 describes the test data. Section 3 presents
an overview of the conducted expert-based human
evaluation. Section 4 describes the metrics evalu-
ated this year (baselines and participants). Sec-
tion 5 describes the conducted meta-evaluation.
Section 6 reports our main results. Section 7 inter-
prets and evaluates metrics’ scores beyond corre-
lations. Section 8 summarizes our results for the
WMT24 General MT Shared Task language-pairs
based on their new ESA human evaluation method-
ology (Kocmi et al., 2024c). Section 9 presents a
description of the submitted challenge sets along
with their findings. Finally, Section 10 summarizes
our most important conclusions.

4https://github.com/google-research/
mt-metrics-eval

https://github.com/google/wmt-mqm-human-evaluation
https://github.com/google/wmt-mqm-human-evaluation
https://github.com/google-research/google-research/tree/master/marot
https://github.com/google-research/google-research/tree/master/marot
https://github.com/google-research/mt-metrics-eval
https://github.com/google-research/mt-metrics-eval
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2 Translation Systems

Similar to previous years’ editions, the source, ref-
erence texts, and MT system outputs for the metrics
task are mainly derived from the WMT24 General
MT Shared Task (Kocmi et al., 2024a). The do-
mains cover news, literary, speech, and social. We
do not provide any sentence splitting, thus many
segments contain multiple sentences. Each lan-
guage pair contains a comparable number of sen-
tences from each domain, resulting in reasonably
balanced test sets. Data statistics can be seen in
Table 2. The language pairs en→de and en→es
have the same source segments; ja→zh consists of
segments from only 3 different domains.

news literary speech social

#tokens

en→{de,es} 9,268 9,601 9,611 9,829
ja→zh 14,896 14,541 11,025

#docs (#segments/doc)

en→{de,es} 17 (8.8) 8 (25.8) 111 (1.0) 34 (15.6)
ja→zh 45 (6.0) 15 (21.1) 136 (1.0)

#sents (#sents/doc)

en→{de,es} 333 (19.6) 607 (75.9) 685 (6.2) 759 (22.3)
ja→zh 634 (14.1) 875 (58.3) 332 (2.4)

Table 2: Test set statistics split by domain. Statistics
are calculated on the source side.

The reference translations provided for the test sets
are produced by professional translators.

For more details regarding the test sets, we refer
the reader to the WMT24 General MT Shared Task
findings paper (Kocmi et al., 2024a). All data has
been released and can be downloaded5.

3 MQM Human Evaluation

Automatic metrics are commonly evaluated by mea-
suring correlations with corresponding human rat-
ings. The quality of these human ratings is criti-
cal, and recent findings (Freitag et al., 2021) have
shown that crowdsourced human ratings are not
sufficiently reliable for evaluating high quality MT
outputs. Furthermore, an evaluation schema based
on MQM (Lommel et al., 2014), which requires
explicit error annotation is more effective than an
evaluation schema that only asks raters for a sin-
gle scalar value per translation. Similar to last
year, we decided to conduct our own MQM-based

5https://github.com/wmt-conference/
wmt24-news-systems

human evaluation on a subset of translation sys-
tem submissions and language pairs which we be-
lieve are most interesting for evaluating current
metrics. Instead of evaluating all MT system sub-
missions, we restrict our human evaluation to the
top scoring submissions, as determined based on
baseline automatic scores. MQM is a general
framework that provides a hierarchy of translation
errors which can be tailored to specific applica-
tions. Google and Unbabel sponsored the human
evaluation for this year’s metrics task for a subset
of language pairs using either professional trans-
lators (English→German, Japanese→Chinese) or
trusted and trained raters (English→Spanish). The
error annotation typology and guidelines used by
Google’s and Unbabel’s annotators differ slightly
and are described in the following two sections.

3.1 English→German & Japanese→Chinese

Annotations for en→de and ja→zh were sponsored
and executed by Google, using 18 professional
translators (10 for en→de, 8 for ja→zh) having
access to the full document context. Each segment
gets annotated by a single rater. Instead of assign-
ing a scalar value to each translation, annotators
were instructed to label error spans within each
segment in a document, paying particular attention
to document context. Each error was highlighted
in the text, and labelled with an error category and
a severity. Segments that are too badly garbled
to permit reliable identification of individual er-
rors are assigned a special Non-translation error.
Error severities are assigned independent of cat-
egory, and consist of Major, Minor, and Neutral
levels, corresponding respectively to actual transla-
tion or grammatical errors, smaller imperfections
and purely subjective opinions about the transla-
tion. Since we are ultimately interested in scoring
segments, we adopt the weighting scheme shown
in Table 3.

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Neutral all 0

Table 3: Google’s MQM error weighting.

Recent research demonstrated that rater assign-
ment is crucial for reliable human evaluation and
we adopted the suggested Pseudo-Side-by-Side

https://github.com/wmt-conference/wmt24-news-systems
https://github.com/wmt-conference/wmt24-news-systems
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(pSxS) rater assignment as suggested in (Riley
et al., 2024). For more details, exact annotator
instructions and a list of error categories, we refer
the reader to Freitag et al. (2021) as the exact same
setup was used for the previous three metrics tasks.

3.2 English→Spanish (Latin America)

The annotations for the en→es (Latin America)6

language pair were sourced from Unbabel, who en-
gaged four professional native language annotators
possessing extensive translation experience. Much
like Google’s approach, these annotators were pro-
vided with the full document context, comprising
up to ten segments. Their task was to identify and
classify errors by highlighting them, following Un-
babel’s MQM 3.0 typology7.

The annotators were instructed to classify the
errors based on severity, with Unbabel’s classifica-
tion encompassing not only “Minor” and “Major”
error severities (analogous to Google’s criteria) but
also a “Critical” error severity. However, to ensure
consistency in our evaluation process, we opted
to align with the Google methodology outlined
previously. Specifically, we treated all annotated
“Critical” errors as “Major” errors, and we applied
a weighting scheme for punctuation errors, as de-
tailed in Table 3.

3.3 Human Evaluation Results

Due to the fact that we ran our own human evalua-
tion, we were only able to evaluate a subset of the
test segments. In Table 4, you can see the number
of segments and documents for each language pair
and test set that we used for human evaluation. In
all cases, the MQM score for a segment is the sum
of the scores for the errors in that segment, and
the MQM score for a test set is the average of the
MQM scores of the segments that were annotated.

The results of the MQM human evaluation can
be seen in Table 5. It’s important to note a non-
intentional, but important difference in our human
evaluation setting for the speech domain between
the three language pairs. For English→German
and English→Spanish, we asked human annota-
tors to compare translations against the ASR out-
put, which inadvertently disadvantaged participants
who used audio input, including those providing
human translations, as these translations rely on an

6Since the testset is for Spanish from Mexico rather than
Spanish from Spain, the conducted annotations were collected
taking that variant in consideration.

7see Unbabel Annotation Guidelines - Typology 3.0

error-free input. This is evident in the higher MQM
scores for the speech domain for both language
pairs for human translations and the dubformer sys-
tem (which also utilizes audio input). However,
for Japanese→Chinese, the human annotators com-
pared against the cleaned human transcription. This
mismatch was not intentional and we will discuss
the impact on the correlation numbers in Section 6.

4 Baselines and Submissions

We computed scores for several baseline metrics
in order to compare submissions against previous
well-studied metrics. We will start by describing
those baselines, and then we will describe the sub-
missions from participating teams. An overview of
the evaluated metrics can be seen in Table 6.

4.1 Baselines

SacreBLEU baselines We use the following met-
rics from SacreBLEU (Post, 2018) as baselines:

• BLEU (Papineni et al., 2002) is based
on the precision of n-grams between the
MT output and its reference, weighted by
a brevity penalty. Using SacreBLEU we
obtained sentence-BLEU values using the
sentence_bleu Python function and for
corpus-level BLEU we used corpus_bleu
(both with default arguments8).

• SPBLEU (NLLB Team et al., 2022) are
BLEU scores computed with subword tok-
enization by the standardized FLORES-200
Sentencepiece models. We used the command
line SacreBLEU to compute the sentence level
SPBLEU9 and we averaged the segment-level
scores to obtain a corpus-level score.

• CHRF (Popović, 2015) uses character
n-grams instead of word n-grams to compare
the MT output with the reference. For CHRF
we used the SacreBLEU sentence_chrf
function (with default arguments10) for
segment-level scores and we average those
scores to obtain a corpus-level score.

8lnrefs.1|case.mixed|lang.LANGPAIR|tok.13a|smooth.exp|
version.2.3.0. For to-zh and to-ja language pairs, we use
tok.zh and tok.ja-mecab

9nrefs:1|case:mixed|eff:yes|tok:flores200|smooth:exp| ver-
sion:2.3.0

10chrF2|lang.LANGPAIR|nchars.6|space.false|version.2.3.0

https://help.unbabel.com/hc/en-us/articles/6444304419479-Annotation-Guidelines-Typology-3-0
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language news social speech literary

en→de 90/149 (17/17) 258/531 (34/34) 111/111 (1/1) 27/206 (8/8)
en→es 124/149 (14/17) 281/531 (20/34) 107/111 (1/1) 110/206 (5/8)
ja→zh 255/269 (45/45) n/a 136/136 (1/1) 168/316 (15/15)

Table 4: Numbers of MQM-annotated segments per domain (number of docs in brackets).

BERTSCORE (Zhang et al., 2020) leverages
contextual embeddings from pre-trained transform-
ers to create soft-alignments between words in can-
didate and reference sentences using cosine similar-
ity. Based on the alignment matrix, BERTSCORE

returns a precision, recall and F1 score. We used
F1 without TF-IDF weighting.

BLEURT (Sellam et al., 2020) is a learned metric
fine-tuned on Direct Assessments (DA). Unlike
COMET, BLEURT encodes the translation and the
reference together and utilizes the [CLS] token as
an embedding to represent the pair. We employed
the BLEURT20 checkpoint (Pu et al., 2021), which
was trained on top of RemBERT using DA data
from previous shared tasks spanning from 2015 to
2019, along with additional synthetic data created
from Wikipedia articles.

COMET-22 (Rei et al., 2022a) is a learned met-
ric fine-tuned using DA from previous WMT Trans-
lation shared tasks. This metric relies on sentence
embeddings from the source, translation, and ref-
erence to produce a final score. We utilized the de-
fault model wmt22-comet-da provided in ver-
sion 2.0.2 of the Unbabel/COMET framework.
This model employs XLM-R large as its backbone
model and is trained on data from the 2017 to 2019
WMT shared tasks, in combination with the MLQE-
PE corpus (Fomicheva et al., 2022).

COMETKIWI (Rei et al., 2022b) is a reference-
free learned metric that functions similarly to
BLEURT, but instead of encoding the transla-
tion along with its reference, it uses the source.
We utilized the wmt22-cometkiwi-da model,
which was a top-performing reference-free met-
ric from the WMT22 shared task. This reference-
free metric is fine-tuned on the same data as
wmt22-comet-da using the version 2.0.2 of the
Unbabel/COMET framework.

PRISMREFSMALL AND PRISMREFMEDIUM
(Thompson and Post, 2020a,b) are both reference-
based PRISM that uses a multilingual MT model
in zero-shot paraphrase model to score the candi-
date translation conditioned on the reference, and

the reference conditioned on the candidate transla-
tion, and averages the two scores. As LLMs have
become quite capable multi-lingual MT models,
we opted to use Llama3.1 (Llama Team, 2024) as
the underlying MT model this year. PRISMREF-
SMALL corresponds to Llama3.1 8B and PRISM-
REFMEDIUM corresponds to Llama3.1 70B. The
long context window of LLMs allows us to com-
pute scores for entire documents, while still averag-
ing scores for each sentence to produce sentence-
level scores (Vernikos et al., 2022). We chunked
longer documents into sub-documents of up to 10
sentences, and added a penalty for producing no
output.

YISI-1 (Lo, 2019) is an MT evaluation metric
that measures the semantic similarity between a ma-
chine translation and human references by aggre-
gating the IDF-weighted lexical semantic similari-
ties based on the contextual embeddings extracted
from pre-trained language models (e.g. RoBERTa,
CamemBERT, XLM-RoBERTa, etc.).

4.2 Metric Submissions

The rest of this section summarizes the participat-
ing metrics.

BLCOM_1 and BLCOM Unfortunately, we
have no information about these submission.

BRIGHT-QE is a referenceless metric, which
uses the XLM-XL encoder to perform multi-stage
fine-tuning according to the XCOMET framework.
In the first stage of training, we used DA 2017 2022
corpus, and gradually reduced the weight of REF-
based loss with the idea of curriculum learning,
trying to reduce the model’s dependence on refer-
ence and better align the semantics of the transla-
tion and source text; in the second stage, we used
batch softmax to normalize scores, and introduced
KL divergence loss to learn to modify the minor
rank error that MSE loss cannot solve, so as to ob-
tain better Pearson correlation; finally, we further
fine-tuned on high-quality MQM corpus to achieve
better consistency with human expert MQM.
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English→German ↓
System all news social speech literary

Dubformer 1.58 1.29 0.60 4.22 1.15
GPT-4 1.58 1.39 0.88 3.60 0.69
Unbabel-Tower70B 1.65 1.99 0.78 3.46 1.41
ONLINE-B 1.81 1.48 1.22 3.59 1.30
TranssionMT 1.81 1.24 1.18 3.87 1.33
refB 1.84 1.38 0.80 4.92 0.81
Mistral-Large 1.93 1.95 1.12 3.91 1.46
CommandR-plus 2.01 2.40 1.07 3.95 1.74
refA 2.12 1.84 1.01 4.96 2.04
Gemini-1.5-Pro 2.20 1.29 1.93 2.90 4.97
ONLINE-W 2.22 1.32 1.75 4.09 2.12
Claude-3.5 2.28 1.00 1.23 6.04 1.13
IOL_Research 2.39 1.66 1.61 4.91 2.01
Aya23 3.09 2.69 2.20 5.71 2.26
ONLINE-A 3.30 1.93 2.29 6.88 2.85
Llama3-70B 3.62 2.91 2.28 7.08 4.76
IKUN 3.86 4.35 2.36 7.09 3.48
IKUN-C 5.07 3.39 3.34 9.87 7.63
MSLC 13.46 11.54 8.24 26.80 15.29

English→Spanish ↓
System all news social speech literary

GPT-4 0.12 0.03 0.14 0.24 0.03
Unbabel-Tower70B 0.20 0.21 0.04 0.68 0.14
Claude-3.5 0.26 0.06 0.21 0.60 0.29
Mistral-Large 0.26 0.16 0.28 0.50 0.12
Gemini-1.5-Pro 0.39 0.18 0.56 0.54 0.06
Dubformer 0.43 0.29 0.07 2.00 0.01
Llama3-70B 0.52 0.10 0.28 2.17 0.02
refA 0.55 0.20 0.12 2.42 0.20
IOL_Research 0.57 0.44 0.33 1.39 0.56
CommandR-plus 0.62 0.50 0.34 0.52 1.55
ONLINE-W 0.64 0.17 0.27 2.36 0.46
IKUN 0.94 0.86 0.74 1.01 1.46
ONLINE-B 1.08 1.01 0.59 1.76 1.77
Aya23 1.52 1.52 1.09 2.03 2.12
MSLC 6.80 4.09 4.63 10.99 11.36

Japanese→Chinese ↓
System all news speech literary

Claude-3.5 1.22 0.76 2.96 0.76
refA 1.32 0.77 3.15 0.77
GPT-4 1.45 0.82 3.25 0.82
DLUT_GTCOM 1.52 1.06 3.66 1.06
Unbabel-Tower70B 1.69 1.16 3.53 1.16
Gemini-1.5-Pro 1.78 0.84 3.80 0.84
CommandR-plus 1.91 1.28 4.61 1.28
IOL_Research 2.10 1.14 4.82 1.14
Aya23 3.03 1.86 6.44 1.86
Llama3-70B 3.07 2.16 6.16 2.16
Team-J 3.91 2.02 8.46 2.02
NTTSU 4.34 2.11 10.51 2.11
ONLINE-B 5.27 3.72 9.52 3.72
IKUN-C 6.60 3.45 14.41 3.45
MSLC 9.19 4.01 19.04 4.01

Table 5: MQM human evaluations for generalMT2024.
Lower average error counts represent higher MT quality.
Systems above any solid line are significantly better
than those below, based on all domains with p < 0.05.

CHRFS (Mukherjee and Shrivastava, 2024) is
an unsupervised reference-based metric, a semantic

version of CHRF++ that integrates sentence embed-
dings to evaluate translation quality more compre-
hensively. By combining traditional character and
word n-gram analysis with semantic information
derived from embeddings, CHRFS captures both
syntactic accuracy and sentence-level semantics.

DAMONMONLI and MONMONLI is a proof-of-
concept of multiple ideas. A multi-lingual NLI
model is used to extract embeddings for (mt, src)
and (mt, ref) pairs, based on findings of Chen and
Eger (2023). A multi-task learning approach is
employed where different human annotations from
WMT22 and WMT23 are used as different tasks.
For each task, it uses a separate regression head
that learns a monotonic function of the metric’s
score(Runje and Shankaranarayana, 2023). The
main metric "DAMONMONLI" also includes a do-
main adversarial loss (Ganin and Lempitsky, 2015)
to make metric representations robust against shifts
in MT systems and language pairs.

GEMBA-ESA (Kocmi and Federmann, 2023)
is an extension of previous work on an LLM-based
metric, with an updated prompt to reflect the new
human evaluation protocol ESA (Kocmi et al.,
2024c) used at WMT General MT task. It con-
tains a two-step approach where in the first step,
MQM error spans are collected and in a second
step, the final score is assigned.

MEE4 (Mukherjee and Shrivastava, 2023a) is
an unsupervised, reference-based metric (an im-
proved version of MEE) focusing on computing
contextual and syntactic equivalences, along with
lexical, morphological, and semantic similarity.
The goal is to comprehensively evaluate the fluency
and adequacy of MT outputs while also consider-
ing the surrounding context. Fluency is determined
by analysing syntactic correlations, while context
is evaluated by comparing sentence similarities us-
ing sentence embeddings. The ultimate score is
derived from a weighted amalgamation of three
distinct similarity measures: a) Syntactic similarity,
which is established using a modified BLEU score.
b) Lexical, morphological, and semantic similar-
ity, quantified through explicit unigram matching.
c) Contextual similarity, gauged by sentence simi-
larity scores obtained from the Language-Agnostic
BERT model.

METAMETRICS-MT (Anugraha et al., 2024;
Winata et al., 2024) is a machine translation
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(MT) metric developed from our METAMET-
RICS (Winata et al., 2024), specifically designed to
better align with human preferences using Bayesian
optimization with Gaussian Processes (GP). By sys-
tematically integrating multiple existing metrics,
we create a sparse allocation that only includes met-
rics enhancing the overall correlation score. We
optimize this metric by maximizing Kendall scores
from the WMT shared task (MQM) 2020-2022.
METAMETRICS-MT achieves state-of-the-art per-
formance for reference-based metrics, while its
reference-free variant, METAMETRICS-MT-QE,
demonstrates competitive correlation with human
scores in the WMT24 metric shared task. By strate-
gically assigning weights to combined metrics,
METAMETRICS-MT aims to be as competitive
as, if not superior to, any individual metric. To ad-
dress missing values when reference data is unavail-
able, we propose a hybrid variant, METAMETRICS-
MT-HYBRID, which utilizes both metrics to com-
pensate for the absence of reference data in the
reference-based setting.

METRICX-24 (Juraska et al., 2024) is a
learned regression-based metric that builds on top
of its predecessor from 2023. Similar to METRICX-
23, it is based on the mT5-XXL pretrained lan-
guage model, which is fine-tuned in two stages on
DA and MQM scores from WMT 2015-22, and
it implements three major design improvements.
First, the training data in both stages is augmented
with synthetic examples to make the metric more
robust to several common failure modes, such as
fluent but unrelated translation, or undertranslation.
Second, a small proportion of DA data is mixed in
during the second stage of fine-tuning in order to
preserve the performance on non-MQM language
pairs. Finally, the model’s training is done on a
mixture of examples that include the source only,
the reference only, or both, which allows the model
to operate in both a QE and a reference-based mode
(and the latter either with or without the source in-
cluded). Hence, both METRICX-24-HYBRID and
METRICX-24-HYBRID-QE submission are in fact
the exact same model, only with the references
excluded from the input in the latter case.

SENTINEL-CAND-MQM, SENTINEL-REF-MQM
and SENTINEL-SRC-MQM (Perrella et al., 2024)
are designed explicitly to scrutinize the accuracy,
robustness, and fairness of the meta-evaluation pro-
cess. The three sentinel metrics are trained only
on the candidate, reference and source sentence re-

spectively on DA and MQM data from WMT 2017
to 2022.

XCOMET AND XCOMET-QE (Guerreiro
et al., 2023) models are trained using both a
sentence-level signal and span-level supervision
coming from MQM data from previous years,
along with some synthetic data that mimics hal-
lucinations. We ensemble XCOMET-XXL and
XCOMET-XL to give a single unified score.

XLSIMMQM (Mukherjee and Shrivastava,
2023b) is an enhanced version of XLSIM, a su-
pervised reference-based evaluation metric, which
we have transformed into a reference-free model
to improve its applicability across multiple lan-
guage pairs. Unlike the original XLSIM, which
was limited to the English-German language pair,
XLSIMMQM is trained on a filtered comprehen-
sive dataset curated from WMT-MQM (2020-22),
ensuring broader applicability and robustness. The
filtered datasets (train, dev and test) contains uni-
form distribution across good, medium and poor-
quality sentences; this careful balancing of the
dataset leads to a better, reliable and robust metric.

5 Meta Evaluation

The goal of metric meta-evaluation is to quantify
how well automatic metrics agree with human rat-
ings of translation quality. There are a multitude
of ways to approach this problem, as evidenced
by the variety of solutions proposed by previous
years’ editions of the shared task. For instance—
to name just a few possible design decisions—the
agreement can be measured at the system or seg-
ment level; the agreement function can be Pearson,
Spearman, Kendall, pairwise agreement, or L2 loss;
the agreement can be computed per domain or on
the full dataset. None of these approaches are nec-
essarily right or wrong, but rather each method
evaluates a different property of the metric.

Because there is no one way to evaluate a metric,
the past two iterations of the Metrics Shared Task
defined a variety of “tasks” (or different configu-
rations of meta-evaluations) that evaluated some
aspect of a metric, then calculated an overall qual-
ity score by averaging the individual task scores.
Implicitly, this approach defines a “high-quality”
metric as one that performs well across the tasks on
average. In 2022, there were 201 tasks that varied
along dimensions such as language pair, domain,
correlation granularity, correlation statistic, etc. In
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2023, the number of tasks was reduced to 10, mea-
suring only pairwise accuracy and Pearson at both
the system and segment levels.

For this year’s meta-evaluation, we follow the
same approach of averaging performance across
tasks, but focus the tasks to better align with how
evaluation metrics are used in practice. The two
main use cases that we targeted were using metrics
to rank a set of MT systems and using a metric
to rank a set of translations for the same source
segment. The former setting is widely used by
academics and practitioners in industry to deter-
mine whether one model produces better transla-
tions than another, and the latter setting has ap-
plications in Minimum Bayes Risk Decoding and
Quality Estimation Reranking either directly as
decoding method (Fernandes et al., 2022; Freitag
et al., 2022) or to further fine-tune models (Finkel-
stein and Freitag, 2024; Finkelstein et al., 2024).
The latter one is getting more popular and can in-
troduce metric biases (Kovacs et al., 2024) that is
an emerging challenge for metrics. As such, we
defined one task to quantify how well metrics work
for each of these two use cases separately for all
three language pairs, resulting in a total of six tasks.

At the system-level, we use the recently pro-
posed metric called soft pairwise accuracy, or SPA
(Thompson et al., 2024). One of the drawbacks
of standard pairwise accuracy (or the very related
Kendall’s τ ) that has been used in previous years’
shared tasks is that it does not account for the un-
certainty of the system ranking. For example, if the
human ranking of two systems is almost arbitrary
(e.g, a statistical tie) but the metric ranking is quite
certain, standard pairwise accuracy will either re-
ward or penalize the metric nearly randomly. The
reverse case—a certain human ranking and uncer-
tain metric ranking—also nearly arbitrarily rewards
or penalizes metrics. If both rankings are uncertain,
the metric will again be rewarded nearly randomly,
and the penalty for an incorrect ranking is equal to
when the metric was very certain but also wrong.

SPA addresses this problem by using p-values
as a proxy for certainty, calculating p-values be-
tween two systems using both the metric and hu-
man scores, then taking 1.0 minus the absolute
difference between the two p-values as the metric’s
score for that pair. This rewards metrics that re-
sult in the same statistical conclusion as the human
scores. Now, statistical ties do not randomly reward
or penalize metrics, but instead the score is propor-
tional to whether or not the metric and human have

language ref used scored ref

en→de B A
en→es A –
ja→zh A –

Table 7: Use of reference translations.

task lang level correlation wt

1 en→de system SPA 1
2 en→de segment acc∗eq 1
3 en→es system SPA 1
4 en→es segment acc∗eq 1
5 ja→zh system SPA 1
6 ja→zh segment acc∗eq 1

Table 8: For each language pair, soft pairwise accuracy
(SPA) was used at the system-level and acc∗eq at the
segment-level. Each task was given equal weight in the
overall average. See §5 for explanations of SPA and
acc∗eq .

the same level of certainty in the ranking.
At the segment-level, we follow last year’s meta-

evaluation and meta-evaluate metrics using “group-
by-item” segment-level accuracy with tie calibra-
tion (Deutsch et al., 2023) denoted acc∗eq.

The six tasks (shown in Table 8) receive equal
weighting in the overall average, which is the final
score for the metric.

Removing Pearson’s Correlation: Notably, the
meta-evaluation this year only focuses on evaluat-
ing rankings and does not include any correlation
that evaluates the absolute value of the scores pre-
dicted by metrics, like Pearson’s correlation. This
decision was made because using metrics to rank
systems or translations is much more common in
practice than using a metric to approximate the ab-
solute quality score as derived by humans, which
is more similar to a Pearson correlation.

Limitations: Like previous years, we acknowl-
edge that this approach is not perfect. One problem
is that we need to combine correlations and ac-
curacies that may have different dynamic ranges,
which could result in certain tasks carrying more
weight than others in the overall ranking. However,
to simplify the implementation, we assigned equal
weight to all tasks, which worked well in last year’s
evaluation.

5.1 Rank Assignment

For each task, we assign ranks to metrics based on
their significance clusters in the same way that we
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did last year, detailed below.
We compare all pairs of metrics and determine

whether the difference in their correlation scores is
significant, according to the PERM-BOTH hypoth-
esis test of Deutsch et al. (2021). We use 1000 re-
sampling runs and set p = 0.05. As advocated by
Wei et al. (2022), we divide the sample into blocks
of 100, compute significance after each block (cu-
mulative over all blocks sampled so far), and stop
early if the p-value is < 0.02 or > 0.50.

The acc∗eq statistic creates a problem for signifi-
cance testing because it optimizes a latent tie thresh-
old for each metric on each test set (just one thresh-
old for all item-wise score vectors). Since the per-
mutation test for comparing two metrics creates
two new vectors by randomly swapping elements
of the original vectors on each draw, this necessi-
tates the very expensive step of finding two new tie
thresholds for each draw. To reduce the expense,
we used the following approximate procedure. First
find an optimal threshold for each input metric on
the current test set, then create all pairs of item-wise
scores and assign a correct/incorrect status to each
pair by examining whether the metric’s ranking
matches the human ranking. Then perform the per-
mutation test on these pairwise status vectors rather
than the original score vectors. This approximation
has more degrees of freedom than the original test,
and can sample pairs that would never result from
swapping the original score vectors, but our experi-
ments showed that it is a reasonable proxy for the
correct procedure.

To compute overall p-values based on weighted
average scores of two metrics across all tasks, we
cache the results of the draws for the per-task sig-
nificance tests. In all cases, these are vectors of K
pairs of correlation or accuracy statistics. Where
K < 1000 due to early stopping, we duplicate ele-
ments to get 1000 examples. Then for i in 1..1000
we compare the weighted average of the pairs from
the ith draw across all tasks, and record the results
to produce an overall p-value.

Clustering. Given significance results (p-values)
for all pairs of metrics, we assign ranks as follows.
Starting with the highest-scoring metric, we move
down the list of metrics in descending order by
score, and assign rank 1 to all metrics until we en-
counter the first metric that is significantly different
from any that have been visited so far. That met-
ric is assigned rank 2, and the process is repeated.
This continues until all metrics have been assigned

a rank. Note that this is a greedy algorithm, and
hence it can place two metrics that are statistically
indistinguishable in different clusters.

5.2 Implementation Details

The code for running the meta-evaluation is avail-
able in the MT Metrics Eval library.11

To calculate p-values for SPA, we use a paired
permutation test (Noreen, 1989) with 1k resamples.

In previous years’ shared tasks, tasks were cate-
gorized based on whether they included additional
reference translations in the overall system ranking.
Following last year’s proposal, we always include
the additional reference in the overall ranking. This
year, this only applies to en→de which is the only
language pair with more than one reference trans-
lation (see Table 7).

Out of all the submitted MT systems, MSLC
consistently scores well below the other systems for
all language pairs and was identified as an outlier
and removed from the correlation calculation.

6 Main Results

As we have described in Section 5, the final statistic
used to rank the metrics is defined as the average
of the results from the six main tasks (system-level
and segment-level tasks in different language pairs).
Table 1 shows the official scores and rankings of
all baselines and primary submissions. Table 9
shows the scores and rankings of each individ-
ual task at system level and segment level, respec-
tively. Similar to last year’s results, neural metrics
perform significantly better than lexical metrics.
Of the 26 evaluated metrics, BLEU, SPBLEU and
CHRF are ranked 23rd, 22nd and 20th respectively.
Fine-tuned neural metrics, like XCOMET and
METRICX-23 are the highest ranked non-ensemble
metrics. The ensemble submission METAMET-
RIC_MT is in the same significance cluster as
XCOMET and METRICX-24-HYBRID, but re-
lies heavily on the 2023 version of METRICX-
24-HYBRID. Like last year, QE metrics perform
very well, with METRICX-24-HYBRID-QE and
GEMBA_ESA sharing the second significance clus-
ter.

Figure 1 shows the correlation scores split by lan-
guage pair. Interestingly, GEMBA_ESA is perform-
ing very well for en→es and ja→zh, while ranked
below many metrics for en→de. GEMBA_ESA is

11https://github.com/google-research/
mt-metrics-eval

https://github.com/google-research/mt-metrics-eval
https://github.com/google-research/mt-metrics-eval
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en-de en-de en-es en-es ja-zh ja-zh
sys seg sys seg sys seg
SPA acc∗eq SPA acc∗eq SPA acc∗eq

Metric avg-corr task1 task2 task3 task4 task5 task6

MetaMetrics-MT 1 0.725 2 0.883 1 0.542 1 0.804 2 0.686 2 0.873 1 0.561
MetricX-24-Hybrid 1 0.721 2 0.874 2 0.532 2 0.799 3 0.685 1 0.897 2 0.539
XCOMET 1 0.719 1 0.905 2 0.530 2 0.791 1 0.688 1 0.890 5 0.510
MetricX-24-Hybrid-QE* 2 0.714 2 0.878 3 0.526 2 0.789 4 0.685 2 0.875 3 0.530
gemba_esa* 2 0.711 4 0.793 5 0.507 1 0.838 5 0.683 1 0.908 2 0.539
XCOMET-QE* 3 0.695 1 0.889 4 0.520 1 0.801 2 0.687 4 0.808 10 0.463
COMET-22 3 0.688 2 0.879 8 0.482 2 0.778 5 0.683 4 0.813 6 0.496
BLEURT-20 3 0.686 2 0.881 7 0.486 3 0.695 6 0.681 1 0.887 8 0.484
MetaMetrics-MT-QE* 3 0.684 2 0.860 6 0.497 3 0.711 2 0.686 3 0.837 4 0.516
bright-qe* 4 0.681 3 0.816 6 0.500 2 0.792 1 0.689 4 0.805 8 0.484
BLCOM_1 4 0.664 3 0.840 10 0.455 3 0.680 6 0.681 3 0.843 7 0.488
sentinel-cand-mqm* 5 0.650 3 0.822 4 0.517 2 0.785 4 0.683 7 0.610 8 0.481
PrismRefMedium 5 0.646 4 0.776 14 0.434 3 0.652 7 0.680 2 0.872 10 0.462
PrismRefSmall 5 0.642 4 0.772 14 0.433 4 0.634 8 0.680 2 0.875 11 0.457
CometKiwi* 5 0.640 5 0.732 9 0.467 3 0.693 4 0.684 5 0.776 7 0.490
damonmonli 5 0.635 5 0.696 12 0.443 4 0.607 6 0.682 1 0.911 9 0.472
YiSi-1 6 0.630 4 0.759 13 0.436 4 0.609 7 0.681 3 0.835 11 0.458
BERTScore 7 0.617 4 0.749 14 0.435 4 0.587 6 0.682 4 0.799 12 0.451
MEE4 7 0.609 5 0.731 13 0.437 7 0.504 4 0.683 2 0.855 13 0.446
chrF 8 0.608 4 0.750 15 0.431 5 0.581 8 0.680 5 0.767 16 0.436
chrfS 8 0.606 4 0.742 14 0.434 6 0.549 6 0.682 4 0.788 14 0.444
spBLEU 9 0.593 4 0.741 17 0.431 6 0.523 7 0.680 6 0.744 16 0.436
BLEU 9 0.589 4 0.736 16 0.431 6 0.512 8 0.680 6 0.740 17 0.435
XLsimMqm* 10 0.515 6 0.612 11 0.450 8 0.359 7 0.681 7 0.548 15 0.438
sentinel-src-mqm* 10 0.513 7 0.406 18 0.429 5 0.580 8 0.680 8 0.546 17 0.435
sentinel-ref-mqm 10 0.513 7 0.405 18 0.429 4 0.581 8 0.680 8 0.545 17 0.435

Table 9: Correlation results per task for the main language pairs. See §5 for descriptions of soft pairwise accuracy
(SPA) and acc∗eq. Rows are sorted by the overall average correlation across all 6 tasks (leftmost column). Starred
metrics are reference-free, and underlined metrics are baselines.

a prompt-based metric and not fine-tuned for any
metric task. Both en→es and ja→zh are new lan-
guage pairs, and no fine-tuning data exists which
might have played in disadvantage for all fine-tuned
metrics.

We continue to be interested in metrics’ abili-
ties to generalise across domains. In Figure 2, we
present the performance of each metric across dif-
ferent domains. Similar to last year, we observe
that neural metrics perform better than lexical over-
lap metrics across all four domains. Figure 3 shows
the average correlations of metrics when grouped
separately by system-level and segment-level tasks.
There is a high correlation between the rankings of
both granularities.

7 Beyond accuracy and correlation

Last year, we conducted two additional analyses
beyond correlation with human scores to find the

threshold of metrics’ score differences correspond
to statistical significance of MT system rankings
demonstrated by human annotators and the metrics
themselves. Despite the better correlation with hu-
man judgements achieved by new neural metrics,
BLEU remains as the most used metric in the MT
research community. One of the reasons is that
MT researchers have established some “shared un-
derstanding” about the relationship between BLEU

and the actual translation quality, and similar in-
tuitions about new metrics have yet to crystallize.
Our analyses beyond correlation provided an inter-
pretation of the metrics’ score differences. Hence,
we are continuing such analyses to support build-
ing an intuitive sense of metric score meanings
and encourage broader adoption of new automatic
MT evaluation metrics. As a reminder, our results
should NOT be used as arguments to forego signifi-
cance tests or appropriate human evaluation.
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Figure 1: Average metrics’ meta-evaluation scores in
tasks grouped by language pair.

Figure 2: Average metrics’ correlation with human in
tasks grouped by domain.

Figure 3: Average metrics’ correlation with human in
tasks grouped by granularity level.

7.1 Correspondence to MQM scores
significance

We first study the relationship between statistically
significant differences in human scores and the
magnitude of metric differences as in Lo et al.
(2023a). We run a two-sided paired t-test with
an equal variance assumption for each system pair
on segment-level MQM scores. After that, we fit
the corresponding metric score differences and the
p-values of the t-test on the MQM scores to an
isotonic regression (Robertson et al., 1988), that
predicts whether the human MQM score differ-
ence will be significant given the metric’s score
difference. Isotonic regression produces a non-
decreasing function where the classifier output can
be interpreted as a confidence level.12 We set
pmqm < 0.05 as the significance level of MQM
scores. Thus, the output of the isotonic regression
function can be viewed as Pr(pmqm < 0.05|∆M)
where pmqm is the p-value of the t-test on the MQM
scores for each system pair and ∆M is the metric
score difference.

Figure 4 shows the (log) p-value of two-sided
paired t-test on the MQM scores against the corre-

12https://scikit-learn.org/stable/
modules/isotonic.html

https://scikit-learn.org/stable/modules/isotonic.html
https://scikit-learn.org/stable/modules/isotonic.html
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sponding BLEU and COMET-22 score difference
for each system pair in en→de. Figures 6-10 in
appendix D, show the same analyses for all metrics
and language pairs. For each metric, we can choose
a particular level of confidence (i.e., a point along
the y-axis on the right) to give metric score differ-
ence cut-offs (i.e., a point along the x-axis) that this
metric difference reflects significant MQM score
differences. Drawing a horizontal line from the
confidence level, say 80%, to the red line enables
us to find the minimum metric difference cut-off
required at the corresponding x-value down from
the red line, i.e. 5.4 for BLEU in Figure 4. Using
this lookup method, Table 10 shows the cut-offs
of ∆M when Pr(pmqm < 0.05|∆M) = 0.8 for
each metric and language pair.

We run the leave-one-system-out cross vali-
dation and Table 10 shows that the range of
precision in the cross validation are consis-
tently high across metrics, except for BLEU,
BRIGHT-QE, COMETKIWI, MEE4, METAMET-
RICS_MT_MQM_QE_KENDALL.SEG.S, SPBLEU

and XLSIMMQM. This means the metric cut-offs
we find using the regression model are reliable.

Contrary to the shared understanding that 2
BLEU improvement represents “significant” or “no-
table by human” improvement in the actual trans-
lation quality, our analyses show that 5.4 BLEU

improvement is required to be confident (80%) that
the MQM scores would be different with statistical
significance for en→de and that threshold would
be as high as 11 BLEU for en→es. Table 10 serves
as a reference between BLEU differences and dif-
ferences in some of the modern metrics and assists
metric users in understanding scores provided by
modern metrics. For example, when evaluating
ja→zh translation quality, we see that a BLEU dif-
ference of 1.4 corresponds to 80% confidence that
the metric’s ranking of the two MT systems will
match the decision made by human annotators with
a significant difference. Meanwhile, a COMET-22
score difference of 0.021 would have the same 80%
chance of human judged significant difference.

7.2 Correspondence to metric scores
significance

We run a study similar to that in the previous sub-
section but on the relations between statistically
significant differences in metric scores and the mag-
nitude of metric differences as inspired by Marie
(2022). Instead of the two-sided t-test on MQM,
the p-values are now obtained by running statis-

tical significance tests with bootstrap resampling
on the metric scores for each system pair. We fit
the corresponding metric score differences and the
p-values of the significance test to an isotonic re-
gression for predicting whether the translation qual-
ity improvement as indicated by the metric will be
significant given the metric score difference. We
set pM < 0.05 and thus, the output of the isotonic
regression function is now Pr(pM < 0.05|∆M),
where pM is the p-value of the significance test on
the metric scores for each system pair and ∆M is
the metric score difference.

Figure 5 shows the (log) p-value of the signifi-
cance test with bootstrap resampling on the metric
scores for BLEU and COMET-22 score difference
of each system pair in en→de. Additional figures
(Figures 11-15 in appendix Appendix D) show the
same analyses for all metrics and language pairs.
Using the same lookup method described in the
previous subsection, Table 11 shows the cut-offs of
∆M when Pr(pM < 0.05|∆M) = 0.8 for each
metric and language pair.

We run the leave-one-system-out cross valida-
tion, and Table 11 shows that the range of precision
in the cross validation are consistently high across
metrics. This means the metric cut-offs we find
using the regression model are reliable.

Table 11 serves as a reference of metric dif-
ferences that correspond to statistical significance
with high confidence. For example, when evaluat-
ing en→de translation quality, we see that a BLEU

difference of 0.97 corresponds to 80% confidence
the difference is statistically significant. Mean-
while, a COMET-22 score difference of 0.0043
would have the same 80% chance of statistical
significance. Our results, agreeing with Marie
(2022), show that to claim significant differences
(pM < 0.05) in BLEU with high confidence (80%),
the differences should be much higher than the
shared understanding of 0.5 BLEU, ranging from
0.89 to 0.97 for the three language pairs.

Closely related to this analysis, Kocmi et al.
(2024b) investigated the agreement between hu-
man evaluations and metric differences, employ-
ing pairwise accuracy as the meta-evaluation met-
ric. Assuming an 80% agreement rate with human
judgments, their findings align closely with ours
for pretrained metrics but not for metrics such as
BLEU or ChrF. For instance, COMET-22 requires
a score difference of 0.0056 to achieve 80% ac-
curacy with humans, compared to our range of
0.0043–0.0055. Similarly, CometKiwi requires a
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Figure 4: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the metric (left: BLEU, right:
COMET-22) score difference for each system pair in en→de. The red line is the isotonic regression fit to all data
points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when
they are less than 0.0001.

en→de en→es ja→zh
Metric min ∆M c.v. precision min ∆M c.v. precision min ∆M c.v. precision
BERTSCORE 0.0099 [50-100%] 0.018 [50-100%] 0.013 [64-100%]
BLCOM_1 0.022 [75-100%] 0.034 [50-100%] 0.021 [62-100%]
BLEU 5.4 [67-100%] 11 [0-100%] 1.4 [50-100%]
BLEURT-20 0.021 [62-100%] 0.014 [60-100%] 0.029 [80-100%]
BRIGHT-QE 0.018 [20-100%] 0.049 [50-100%] 0.061 [62-100%]
CHRF 3.0 [67-100%] 2.1 [57-100%] 3.5 [78-100%]
CHRFS 0.023 [50-100%] 0.043 [50-100%] 0.021 [60-100%]
COMET-22 0.018 [50-100%] 0.017 [60-100%] 0.021 [60-100%]
COMETKIWI 0.024 [17-100%] 0.027 [33-100%] 0.050 [67-100%]
DAMONMONLI 0.84 [27-100%] 0.064 [50-100%] 0.51 [88-100%]
GEMBA_ESA 4.5 [70-100%] 1.5 [67-100%] 4.8 [86-100%]
MEE4 0.019 [25-100%] 0.028 [33-100%] 0.019 [55-100%]
metametrics_mt_mqm_hybrid_kendall 0.029 [53-100%] 0.066 [60-100%] 0.066 [70-100%]
metametrics_mt_mqm_qe_kendall.seg.s 0.016 [14-100%] 0.025 [50-100%] 0.031 [67-100%]
METRICX-24-HYBRID 0.52 [73-100%] 0.95 [62-100%] 0.60 [75-100%]
METRICX-24-HYBRID-QE 0.44 [62-100%] 0.39 [67-100%] 0.63 [78-100%]
PRISMREFMEDIUM 0.073 [67-100%] 0.12 [50-100%] 0.14 [56-100%]
PRISMREFSMALL 0.10 [67-100%] 0.15 [50-100%] 0.15 [56-100%]
SENTINEL-CAND-MQM 0.066 [50-100%] 0.13 [50-100%] 0.088 [55-100%]
SENTINEL-REF-MQM — — — — — —
SENTINEL-SRC-MQM — — — — — —
SPBLEU 4.3 [50-100%] 9.1 [0-100%] 4.0 [75-100%]
XCOMET 0.022 [53-100%] 0.025 [67-100%] 0.046 [78-100%]
XCOMET-QE 0.013 [50-100%] 0.029 [50-100%] 0.062 [67-100%]
XLSIMMQM 0.018 [100-100%] 0.0012 [57-100%] 0.004 [43-100%]
YISI-1 0.0063 [60-100%] 0.0098 [56-100%] 0.012 [75-100%]

Table 10: Minimum ∆M when Pr(pmqm < 0.05|∆M) = 0.8 for each metric in different language pairs round to
2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out cross
validation.

difference of 0.0053, while our results range from
0.0037 to 0.0056. Conversely, for BLEU, their
analysis suggests an expected improvement of 2.34
BLEU points for 80% agreement, whereas our anal-
ysis indicates a need for an improvement of 0.89–
0.97 BLEU points. However, it is important to note
that we are comparing distinct metrics, and that
confidence levels are not directly comparable to
agreement rates.

We have to emphasize again that our result
should NOT be interpreted as evidence to forego
significance tests or appropriate human evaluation.
Instead, we are only providing assistance to build
an intuition on the meaning of the scores provided
by the new metrics to encourage the transition
away from lexical metrics towards more recent and
stronger metrics.
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Figure 5: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (left: BLEU, right: COMET-22) score difference for each system pair in en→de. The red line is the
isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability, values of pM are
rounded up to 0.0001 when they are less than 0.0001.

en→de en→es ja→zh
Metric min ∆M c.v. precision min ∆M c.v. precision min ∆M c.v. precision
BERTSCORE 0.0028 [92-100%] 0.0028 [100-100%] 0.0044 [100-100%]
BLCOM_1 0.0039 [100-100%] 0.0055 [100-100%] 0.0044 [100-100%]
BLEU 0.97 [100-100%] 0.93 [100-100%] 0.89 [91-100%]
BLEURT-20 0.0056 [96-100%] 0.0053 [94-100%] 0.0068 [95-100%]
BRIGHT-QE 0.0041 [89-100%] 0.0078 [94-100%] 0.024 [95-100%]
CHRF 0.83 [96-100%] 0.77 [94-100%] 0.89 [100-100%]
CHRFS 0.0051 [91-100%] 0.0054 [95-100%] 0.0055 [95-100%]
COMET-22 0.0043 [96-100%] 0.0055 [86-100%] 0.0046 [95-100%]
COMETKIWI 0.0037 [100-100%] 0.0048 [82-100%] 0.0056 [100-100%]
DAMONMONLI 0.20 [94-100%] 0.17 [82-100%] 0.41 [90-100%]
GEMBA_ESA 0.82 [92-100%] 0.85 [91-100%] 1.4 [100-100%]
MEE4 0.0042 [95-100%] 0.0051 [86-100%] 0.0057 [95-100%]
metametrics_mt_mqm_hybrid_kendall 0.0067 [92-100%] 0.0081 [89-100%] 0.013 [90-100%]
metametrics_mt_mqm_qe_kendall.seg.s 0.0038 [89-100%] 0.0050 [80-100%] 0.0089 [95-100%]
METRICX-24-HYBRID 0.11 [100-100%] 0.15 [100-100%] 0.14 [95-100%]
METRICX-24-HYBRID-QE 0.087 [90-100%] 0.14 [100-100%] 0.12 [100-100%]
SENTINEL-CAND-MQM 0.011 [96-100%] 0.013 [95-100%] 0.030 [95-100%]
SENTINEL-REF-MQM — — — — — —
SENTINEL-SRC-MQM — — — — — —
SPBLEU 0.96 [96-100%] 1.1 [95-100%] 1.0 [100-100%]
PRISMREFMEDIUM 0.019 [95-100%] 0.02 [100-100%] 0.036 [90-100%]
PRISMREFSMALL 0.023 [96-100%] 0.022 [100-100%] 0.042 [95-100%]
XCOMET 0.0051 [100-100%] 0.0065 [86-100%] 0.010 [95-100%]
XCOMET-QE 0.0044 [96-100%] 0.0058 [94-100%] 0.0099 [100-100%]
XLSIMMQM 0.0036 [82-100%] 0.0013 [90-100%] 0.0019 [79-100%]
YISI-1 0.0010 [91-100%] 0.0014 [90-100%] 0.0051 [100-100%]

Table 11: Minimum ∆M when Pr(pM < 0.05|∆M) = 0.8 for each metric in different language pairs round to
2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out cross
validation.

8 ESA Human Evaluation

In addition to our MQM annotations and as a con-
trastive evaluation to cover more language pairs,
we look into the performance of metrics when com-
pared to the human evaluation campaign conducted
by the WMT24 General MT Shared Task (Kocmi
et al., 2024a), which ran human evaluation for nine
language pairs.

In contrast to previous years, WMT24 redefined

their human evaluation process and developed a
new method called Error Span Analysis (ESA,
Kocmi et al. (2024c)), a method that simplifies
MQM by asking annotators only to mark error
spans and classify them either as minor or major
severity. In addition to that, the annotator is asked
to mark the whole segment with a score of 0–100
in the SQM fashion. As Kocmi et al. (2024c) claim,
the method is cheaper than MQM to annotate, yet
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it produces closer human judgment to MQM anno-
tations than the formerly used DA+SQM (Kocmi
et al., 2023) due to being less affected by fluency.

We present system-level accuracy results for
both MQM and ESA in Table 15. There are many
factors that could affect the ranking. Apart from
using a different human annotation protocol, MQM
compares 3 language pairs whereas ESA compares
9 language pairs, containing also two low-resource
pairs: Czech→Ukrainian and English→Icelandic.
There is an overlap of only one language pair be-
tween the two: English→Spanish.

Most of the metrics have a similar ranking for
both MQM and ESA; however, there are two met-
rics with largely different rankings: GEMBA_ESA

and metametrics_mt_mqm_qe_kendall.seg.s,
whose rankings are significantly lower under
ESA than for MQM. The likely explanation
for GEMBA_ESA is that ESA doesn’t produce
ties, in contrast to MQM, whereas GEMBA_ESA

produces them regularly. As for the latter metric,
we don’t see any clear pattern except for having
low performance for Czech→Ukrainian.

9 Challenge Sets Sub-task

For the third year, the Metrics Shared Task included
a sub-task involving challenge sets. This sub-task
is inspired by the Build it or break it: The Lan-
guage Edition shared task (Ettinger et al., 2017)
which aimed at testing the generalizability of NLP
systems beyond the distributions of their training
data. Whereas the standard evaluation of the shared
task is conducted on test sets containing generic
text from real-world content, the challenge set eval-
uation is based on test sets designed with the aim of
revealing the abilities or the weaknesses of the met-
rics or evaluating particular translation phenomena.
In order to shed light on different perspectives on
evaluation, the sub-task takes place in a decentral-
ized manner, since contrary to the main metric task,
the test sets are not provided by the organizers but
by different research teams, who are also responsi-
ble for analysing and presenting the results.

This subtask is made of three consecutive phases;
1) the Breaking Round, 2) the Scoring Round and
3) the Analysis Round:

1. In the Breaking Round, every challenge set
participant (Breaker) submits their challenge
set S composed of examples for different phe-
nomena, where every example (s, t, r) ∈ S

contains one source sentence s, one transla-
tion hypothesis t and one reference r.

2. In the Scoring Round, The metrics participants
from the main task (the Builders) are asked to
score with their metrics the translations in the
given test set. Also, in this phase, the metrics
task organizers score all data with the baseline
metrics.

3. Finally, after having gathered all metric scores,
the organizers return the respective scored
translations to the Breakers for the Analysis
round, where they employ their own evalua-
tion for the performance of the metrics with
regard to the phenomena they intended to test.

This year there were 4 submissions, covering a
wide range of phenomena and 23 different language
pairs, which supersede the official language pairs
of the Metrics Shared Task. An overview of the
submitted challenge sets can be seen in Table 12.
A short description of every submission follows:

AfriMTE Challenge Set The AFRIMTE chal-
lenge set (Wang et al., 2024b) aims to evaluate the
capabilities of metrics for machine translation on
low-resource languages, primarily assessing cross-
lingual transfer learning and generalization across
a wide range of under-resourced African languages.
The challenge set concentrates on the subsets
of the FLORES-200 dataset (NLLB-Team et al.,
2022) and covers 13 language pairs. Specifically,
there are Darija-French, English-Egyptian Ara-
bic, English-French, English-Hausa, English-Igbo,
English-Kikuyu, English-Luo, English-Somali,
English-Swahili, English-Twi, English-isiXhosa,
English-Yoruba, and Yoruba-English. Originally,
AFRIMTE (Wang et al., 2024a) provides both fine-
grained word-level error annotations and sentence-
level Direct Assessment scoring for translation
adequacy and fluency. For this year’s challenge
set sub-task, we utilize the translation adequacy
test set from AFRIMTE as the African Challenge
set to evaluate the sentence-level scoring perfor-
mance of metrics. The analysis of the task sub-
missions (Wang et al., 2024b) has yielded sev-
eral insights. First, language-specific adaptation,
cross-lingual transfer learning, and larger language
model sizes significantly enhance metric perfor-
mance. Second, moderately-sized supervised mod-
els can attain robust performance when augmented
with language adaptation techniques tailored to
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Challenge Set Directions Phenomena Items Citation Link (https://github.com/)

AfriMTE 13 African languages 2,815 Wang et al. (2024b) masakhane-io/africomet

BioMQM 11 biomedical domain 4,641 Zouhar et al. (2024) thompsonb/bio-mqm-dataset

DFKI 2 linguistic phenomena 137,000 Avramidis et al. (2024) DFKI-NLP/mt-testsuite

MSLC24 3 low quality MT 964 Knowles et al. (2024) nrc-cnrc/MSLC

Table 12: Overview of the participation at the metrics challenge sets sub-task.

low-resource African languages during pretrain-
ing. Last, submissions demonstrate promising out-
comes for language pairs such as Darija-French,
English-Egyptian Arabic, and English-Swahili.
However, considerable challenges remain for ex-
tremely low-resource languages like English-Luo
and English-Twi, underscoring critical areas for
future research and improvement in machine trans-
lation metrics for African languages.

BioMQM Recent work (Zouhar et al., 2024) has
compared trained versus untrained metric perfor-
mance on the WMT domains compared to the
biomedical domain and shown that trained metrics
appear to be over-fitting on the domains used in the
WMT Metrics Shared Tasks. This is likely due to
trained metrics using prior WMT metrics datasets,
and then being evaluated on very similar data in
the latest WMT Metrics Shared Task. Zouhar et al.
(2024) released a biomedical dataset (BioMQM)
consisting of source sentences and translations
from Yeganova et al. (2021) along with new trans-
lations and MQM annotations. We produce scores
on the BioMQM for the latest metrics (all those
submitted to this Metrics Shared Task, plus the
baseline metrics) and release them for future analy-
sis.13

DFKI Challenge Set This year’s submission by
DFKI (Avramidis et al., 2024) expands the linguis-
tically motivated challenge set of previous years
(Avramidis et al., 2023; Avramidis and Macke-
tanz, 2022), including 137,000 items in overall,
extracted from 100 MT systems for the two lan-
guage directions (en→de, en→ru), covering more
than 100 linguistically-motivated phenomena or-
ganized in 14 linguistic categories. The metrics
with the statistically significant best performance
with regard to our linguistically motivated analy-
sis are METRICX-24-HYBRID and METRICX-24
for en→de and METRICX-24 for en→ru, whereas
METAMETRICS and XCOMET are in the next rank-

13https://github.com/thompsonb/
bio-mqm-dataset/tree/main/data/WMT24_
Metrics_ChallengeSet

ing positions in both language pairs. Metrics are
more accurate in detecting linguistic errors among
LLM translations than in translations based on the
encoder-decoder NMT architecture. Some of the
most difficult phenomena for the metrics to score
are the transitive past progressive, the multiple con-
nectors, the ditransitive simple future I for en→de
and pseudogapping, contact clause and cleft sen-
tences for en→ru. The LLM-based metric GEMBA,
despite the overall low performance, has the best
performance on scoring German negation errors.

MSLC24 Challenge Set Building on the Metric
Score Landscape Challenge (MSLC23; Lo et al.,
2023b), which aims to provide a view of metric
performance on a broader range of MT quality,
MSLC24 includes a collection of low- to medium-
quality MT systems’ output on the news portion of
the WMT24 General MT Shared Task test set, as
well as some specific phenomena that may result
in unexpected behaviors from some metrics, such
as empty strings in source/reference/hypothesis,
wrong/mixed language output and different lan-
guage variants. MSLC24 focuses on three lan-
guage pairs (English→German, English→Spanish
and Japanese→Chinese). The authors also submit
the top system in this challenge set to the General
Translation task in order to obtain human evalu-
ation. Together with the high quality systems by
other participants submitted to the General MT
Shared Task, this enables better interpretation of
metric scores across a range of different levels
of translation quality and analyse metric charac-
teristics beyond just correlation. The results of
MSLC24 highlight the importance of examining
real-word corner cases and issues of reproducibility
in order to more responsibly introduce new metrics
to the research community.

10 Conclusion

This paper summarizes the results of the WMT24
shared task on automated machine translation eval-
uation, the Metrics Shared Task. We presented an
extensive analysis on how well metrics perform on

https://github.com/masakhane-io/africomet
https://github.com/thompsonb/bio-mqm-dataset/tree/main/data/WMT24_Metrics_ChallengeSet
https://github.com/DFKI-NLP/mt-testsuite
https://github.com/nrc-cnrc/MSLC23
https://github.com/thompsonb/bio-mqm-dataset/tree/main/data/WMT24_Metrics_ChallengeSet
https://github.com/thompsonb/bio-mqm-dataset/tree/main/data/WMT24_Metrics_ChallengeSet
https://github.com/thompsonb/bio-mqm-dataset/tree/main/data/WMT24_Metrics_ChallengeSet
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our three main language pairs: English→German,
English→Spanish and Japanese→Chinese. The re-
sults, based on 6 different tasks, confirm the superi-
ority of neural-based learned metrics over overlap-
based metrics like BLEU, SPBLEU or CHRF. These
results are confirmed with ESA human judgement.
Overall, we did not find any issues for neural fine-
tuned metrics when evaluating LLM-based trans-
lations. In addition, we continued the challenge
set subtask, where participants had to create con-
trastive test suites for evaluating metrics’ ability to
capture and penalise specific types of translation
errors.

11 Ethical Considerations

MQM annotations in this paper are done by profes-
sional translators. They are all paid at professional
rates.

Organizers from the National Research Coun-
cil Canada, Unbabel have submitted to this task
the frozen stable versions of their metrics (YiSi
and COMET) dated before this year’s shared task
and publicly available. Newer versions of MetricX
were developed without using any of the test set,
test suite or challenge sets. We ensured that the
metrics co-authored by Tom Kocmi were imple-
mented without using any privileged test sets or
insider information.
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A Correlations with MQM for all metrics

Table 13 contains the results for all metrics (including contrastive submissions) on the 6 standard tasks
described in Table 8.

en-de en-de en-es en-es ja-zh ja-zh
sys seg sys seg sys seg
SPA acc∗eq SPA acc∗eq SPA acc∗eq

Metric avg-corr task1 task2 task3 task4 task5 task6

MetricX-24 1 0.725 2 0.873 2 0.534 2 0.789 3 0.685 1 0.921 2 0.547
MetaMetrics-MT 1 0.725 2 0.882 1 0.542 2 0.805 2 0.686 3 0.872 1 0.561
metametrics_mt_mqm_kendall 1 0.724 2 0.882 1 0.542 2 0.804 2 0.686 3 0.871 1 0.561
metametrics_mt_mqm_same_source_targ 2 0.723 1 0.883 1 0.542 2 0.803 2 0.686 3 0.874 2 0.550
MetricX-24-Hybrid 2 0.720 2 0.873 2 0.532 2 0.796 3 0.685 2 0.895 3 0.539
XCOMET 2 0.719 1 0.906 3 0.530 2 0.788 1 0.688 2 0.890 7 0.510
MetricX-24-Hybrid-QE* 3 0.714 2 0.880 4 0.526 2 0.790 4 0.685 3 0.875 4 0.530
gemba_esa* 3 0.712 4 0.793 6 0.507 1 0.838 5 0.683 1 0.909 3 0.539
MetricX-24-QE* 3 0.710 2 0.880 3 0.528 3 0.772 3 0.685 3 0.875 5 0.522
CometKiwi-XXL* 3 0.703 3 0.839 9 0.481 1 0.843 8 0.680 2 0.881 8 0.494
XCOMET-QE* 4 0.695 1 0.890 5 0.520 2 0.801 2 0.687 5 0.809 12 0.463
COMET-22 4 0.689 2 0.877 9 0.482 2 0.782 5 0.683 5 0.815 8 0.496
metametrics_mt_mqm_qe_same_source_t* 4 0.688 2 0.860 7 0.497 4 0.709 2 0.686 4 0.853 5 0.524
BLEURT-20 4 0.686 2 0.879 8 0.486 4 0.696 6 0.681 2 0.888 10 0.484
MetaMetrics-MT-QE* 5 0.685 2 0.859 7 0.497 4 0.710 2 0.686 5 0.839 6 0.516
bright-qe* 5 0.682 3 0.817 7 0.500 2 0.794 1 0.689 5 0.806 10 0.484
BLCOM_1 6 0.664 3 0.842 11 0.455 4 0.679 6 0.681 4 0.840 9 0.488
sentinel-cand-mqm* 7 0.649 3 0.820 5 0.517 2 0.786 4 0.683 9 0.609 10 0.481
PrismRefMedium 7 0.646 4 0.776 15 0.434 4 0.651 8 0.680 3 0.872 12 0.462
PrismRefSmall 7 0.643 4 0.774 15 0.433 5 0.635 8 0.680 3 0.874 13 0.457
CometKiwi* 7 0.640 5 0.731 10 0.467 4 0.695 4 0.684 6 0.775 9 0.490
damonmonli 7 0.635 5 0.695 13 0.443 5 0.607 6 0.682 1 0.912 11 0.472
YiSi-1 8 0.630 4 0.758 14 0.436 5 0.610 7 0.681 5 0.836 13 0.458
monmonli 8 0.624 5 0.681 14 0.437 5 0.583 7 0.681 2 0.891 11 0.470
BERTScore 9 0.617 4 0.749 15 0.435 5 0.585 6 0.682 6 0.798 14 0.451
MEE4 9 0.609 5 0.731 14 0.437 7 0.498 4 0.683 3 0.856 15 0.446
chrF 10 0.607 4 0.751 17 0.431 5 0.579 9 0.680 7 0.765 18 0.436
chrfS 10 0.606 4 0.742 15 0.434 6 0.549 6 0.682 6 0.788 16 0.444
spBLEU 11 0.593 4 0.741 19 0.431 6 0.524 8 0.680 8 0.745 18 0.436
BLEU 11 0.589 4 0.736 18 0.431 7 0.513 9 0.680 8 0.739 19 0.435
BLCOM 12 0.537 6 0.619 16 0.433 3 0.730 8 0.680 10 0.325 19 0.435
sentinel-ref-mqm 12 0.523 6 0.495 20 0.429 6 0.514 9 0.680 9 0.583 19 0.435
sentinel-src-mqm* 12 0.522 6 0.496 20 0.429 7 0.512 9 0.680 9 0.581 19 0.435
XLsimDA* 12 0.514 6 0.614 12 0.450 8 0.357 7 0.681 9 0.548 17 0.438
XLsimMqm* 12 0.514 6 0.614 12 0.450 8 0.357 7 0.681 9 0.547 17 0.438

Table 13: Soft pairwise accuracy (SPA) and acc∗eq results for all metrics for main language pairs. See §5 for
descriptions of SPA and acc∗eq. Rows are sorted by the overall average correlation across all 6 tasks (leftmost
column). Starred metrics are reference-free, underlined metrics are baselines, and italicized metrics are contrastive
submissions.
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Metric avg corr p-values

MetaMetrics-MT 1 0.725 . 19 07 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-24-Hybrid 1 0.721 . . 31 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
XCOMET 1 0.719 . . . 15 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-24-Hybrid-QE* 2 0.714 . . . . 36 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
gemba_esa* 2 0.711 . . . . . 01 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
XCOMET-QE* 3 0.695 . . . . . . 22 14 14 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
COMET-22 3 0.688 . . . . . . . 20 34 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BLEURT-20 3 0.686 . . . . . . . . 43 28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetaMetrics-MT-QE* 3 0.684 . . . . . . . . . 34 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
bright-qe* 4 0.681 . . . . . . . . . . 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BLCOM_1 4 0.664 . . . . . . . . . . . 04 02 00 00 01 00 00 00 00 00 00 00 00 00 00
sentinel-cand-mqm* 5 0.650 . . . . . . . . . . . . 41 25 21 13 06 01 00 00 00 00 00 00 00 00
PrismRefMedium 5 0.646 . . . . . . . . . . . . . 11 35 19 01 00 00 00 00 00 00 00 00 00
PrismRefSmall 5 0.642 . . . . . . . . . . . . . . 43 30 03 00 00 00 00 00 00 00 00 00
CometKiwi* 5 0.640 . . . . . . . . . . . . . . . 33 17 03 00 01 00 00 00 00 00 00
damonmonli 5 0.635 . . . . . . . . . . . . . . . . 34 06 01 02 01 00 00 00 00 00
YiSi-1 6 0.630 . . . . . . . . . . . . . . . . . 01 00 00 00 00 00 00 00 00
BERTScore 7 0.617 . . . . . . . . . . . . . . . . . . 14 04 03 00 00 00 00 00
MEE4 7 0.609 . . . . . . . . . . . . . . . . . . . 41 26 00 01 00 00 00
chrF 8 0.608 . . . . . . . . . . . . . . . . . . . . 36 00 00 00 00 00
chrfS 8 0.606 . . . . . . . . . . . . . . . . . . . . . 00 01 00 00 00
spBLEU 9 0.593 . . . . . . . . . . . . . . . . . . . . . . 25 00 00 00
BLEU 9 0.589 . . . . . . . . . . . . . . . . . . . . . . . 00 00 00
XLsimMqm* 10 0.515 . . . . . . . . . . . . . . . . . . . . . . . . 45 49
sentinel-src-mqm* 10 0.513 . . . . . . . . . . . . . . . . . . . . . . . . . 53
sentinel-ref-mqm 10 0.513 . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 14: Results of pairwise metric significance tests for primary submissions using permutation resampling. Each
value gives the 100 × estimated probability of the null hypothesis that the average correlation of the metric in the
current row is ≤ the average correlation of the metric in the current column. Starred metrics are reference-free, and
underlined metrics are baselines.

B Significance comparisons for main results

Table 14 contains the results of pairwise comparisons for the results in Table 1.

C Correlations with WMT ESA for all metrics

Table 15 shows the correlations of the metrics to the ESA scores (see Section 8 for which those scores are
available). The overall ranking is sorted by the average correlation, which is the average over all tasks
across all language pairs. Metrics that did not participate in all tasks do not have an average correlation,
and are displayed at the end of the table.

The system-level ESA scores that were used to calculate SPA here differ slightly from those in the
General MT Shared Task. Namely, the General Task calculates scores by macro-averaging over domains
(each domain receives equal weight), whereas we perform a standard micro-average (each segment
receives equal weight).
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Table 15: Correlations of metrics to the ESA annotations that were collected as part of the General MT Shared Task.
The metrics are sorted by the average correlation across all of the correlations and language pairs. Metrics in italics
are contrastive submissions and underlined metrics are baselines. QE metrics are marked by an asterisk.
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D Additional figures

Figures 6-10 show the (log) p-value of two-sided paired t-test on the MQM scores against the score
difference of each metric for each system pair in each language pair. Figures 11-15 show the (log) p-value
of significance test with bootstrap resampling on the metric scores against the score difference of that
metric for each system pair in each language pair.

en→de en→es ja→zh

Figure 6: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: BERTSCORE, BLCOM_1, BLEU, BLEURT-20, BRIGHT-QE) for each system pair in each language
pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data points, representing
Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when they are less than
0.0001.
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en→de en→es ja→zh

Figure 7: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: CHRF, CHRFS, COMET-22, COMETKIWI, DAMONMONLI, GEMBA_ESA) for each system pair in
each language pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data points,
representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when they
are less than 0.0001.
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en→de en→es ja→zh

Figure 8: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score differ-
ence of each metric (top to bottom: MEE4, METAMETRICS_MT_MQM_HYBRID_KENDALL, METAMET-
RICS_MT_MQM_QE_KENDALL.SEG.S, METRICX-24-HYBRID, METRICX-24-HYBRID-QE) for each system pair
in eachlanguage pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data
points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when
they are less than 0.0001.
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en→de en→es ja→zh

Figure 9: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score difference of each
metric (top to bottom: PRISMREFMEDIUM, PRISMREFSMALL, SENTINEL-CAND-MQM, SENTINEL-REF-MQM,
SENTINEL-SRC-MQM, SPBLEU) for each system pair in eachlanguage pair (left to right: en→de, en→es, ja→zh).
The red line is the isotonic regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for
readability, values of pmqm are rounded up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 10: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score difference of each
metric (top to bottom: XCOMET, XCOMET-QE. XLSIMMQM, YISI-1) for each system pair in eachlanguage
pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data points, representing
Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when they are less than
0.0001.
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en→de en→es ja→zh

Figure 11: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: BERTSCORE, BLCOM_1, BLEU, BLEURT-20, BRIGHT-QE, CHRF) score difference
for each system pair in each language pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic
regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability, values of pM are rounded
up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 12: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: CHRFS, COMET-22, COMETKIWI, DAMONMONLI, GEMBA_ESA, MEE4) score
difference for each system pair in each language pair (left to right: en→de, en→es, ja→zh). The red line is the
isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability, values of pM are
rounded up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 13: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric
scores against each metric (top to bottom: METAMETRICS_MT_MQM_HYBRID_KENDALL, METAMET-
RICS_MT_MQM_QE_KENDALL.SEG.S, METRICX-24-HYBRID, METRICX-24-HYBRID-QE, PRISMREFMEDIUM,
PRISMREFSMALL) score difference for each system pair in each language pair (left to right: en→de, en→es,
ja→zh). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for
readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 14: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: SENTINEL-CAND-MQM, SENTINEL-REF-MQM, SENTINEL-SRC-MQM, SPBLEU,
XCOMET, XCOMET-QE) score difference for each system pair in each language pair (left to right: en→de,
en→es, ja→zh). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M).
Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 15: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: XLSIMMQM, YISI-1) score difference for each system pair in each language pair
(left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data points, representing
Pr(pM < 0.05|∆M). Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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