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Abstract
We participated in the constrained track for
English-Japanese and Japanese-Chinese trans-
lations at the WMT 2024 General Machine
Translation Task. Our approach was to gen-
erate a large number of sentence-level transla-
tion candidates and select the most probable
translation using minimum Bayes risk (MBR)
decoding and document-level large language
model (LLM) re-ranking. We first generated
hundreds of translation candidates from multi-
ple translation models and retained the top 30
candidates using MBR decoding. In addition,
we continually pre-trained LLMs on the target
language corpora to leverage document-level
information. We utilized LLMs to select the
most probable sentence sequentially in context
from the beginning of the document.

1 Introduction

This paper details Team-J’s system submission
for the WMT 2024 Shared Task: General Ma-
chine Translation. We participated in the English-
Japanese (En→Ja) and Japanese-Chinese (Ja→Zh)
translation tasks under the constrained track.

As with last year’s competition, the use of pub-
licly available pre-trained models and metrics eval-
uated in the WMT Metrics shared tasks, such as
COMET (Rei et al., 2020), was permitted. Fol-
lowing the Kudo et al.’s (2023) system, we em-
ployed multiple machine translation (MT) models
to generate numerous candidate sentences for each
source text. We then applied minimum Bayes risk
(MBR) decoding (Fernandes et al., 2022) using the
COMET metric to select the optimal translations.

Additionally, contrary to the previous years, the
use of large language models (LLMs) was also
permitted this year. Our primary objective was to
use these LLMs to achieve consistent document-
level machine translation. Specifically, we aimed

∗: Equal contributions.

to develop models based on LLMs and also imple-
mented a reranking system. Figure 1 provides an
overview of our system. The following sections
describe its components in detail.

2 Dataset Construction

In this section, we describe the training data, the
process of synthetic data generation, and the data
cleaning methodologies.

2.1 Provided Data
Since we participated in the constrained track, we
solely used the data officially provided by the orga-
nizer.

Bitext data. We used all the provided bitext
data. For English to Japanese translation, we
used JParaCrawl v3.0 (Morishita et al., 2022a),
News Commentary v18, Wiki Titles v3, Wiki-
Matrix (Schwenk et al., 2021), Japanese-English
Subtitle Corpus (JESC) (Pryzant et al., 2018),
The Kyoto Free Translation Task (KFTT) Cor-
pus (Neubig, 2011), and TED Talks (Cettolo et al.,
2012). For Japanese to Chinese translation, we
used JParaCrawl Chinese (Nagata et al., 2024),
News Commentary v18, Linguatools Wiki Titles,
WikiMatrix, OPUS, and Neulab TED Talks (Tiede-
mann, 2012).

Monolingual data. We also used the follow-
ing provided monolingual data for Japanese
and Chinese: News Crawl, News Commentary,
Leipzig Corpora (Goldhahn et al., 2012), Common
Crawl (Buck et al., 2014), and Extended Common
Crawl (Conneau et al., 2020; Wenzek et al., 2020).
For the continual pre-training of the language mod-
els, we only used the Common Crawl and Extended
Common Crawl due to the limited availability of
document-level data beyond these two datasets.

Development data. We used NTREX-128 (Fed-
ermann et al., 2022), Flores-200 (Team et al., 2022;
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Figure 1: System overview

Goyal et al., 2022; Guzmán et al., 2019) and the
past WMT test sets as development data. These
datasets were also employed to fine-tune the mod-
els.

2.2 Synthetic Data

We constructed synthetic data to augment the train-
ing dataset. We used the synthetic data created by
Kudo et al. (2023) for the En→Ja task, and newly
created data for the Ja→Zh task as follows. For pre-
processing, we tokenized the bitext (Section 2.1)
into truecased1 subwords using a unigram language
model with Sentencepiece (Kudo and Richardson,
2018), with “byte_fallback”, and “split_digits” op-
tions enabled following Touvron et al. (2023);
Dubey et al. (2024); Kudo et al. (2023). After
that, we created a back translation model (Sennrich
et al., 2016), which we call an initial translation
model using the training configurations in Table 7
(Appendix C) and trained it on the bitext. Then,
we translated the Chinese monolingual data (Sec-
tion 2.1) with a beam size of 10 and a length penalty
of 1.0.

2.3 Data Cleaning

We conducted data cleaning on the corpus. Specif-
ically, we applied several rules to clean and fil-
ter out noisy sequences using HojiChar (Shinzato,
2023). HojiChar is a text preprocessing tool that
mainly supports monolingual corpus in Japanese

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl

and English, with typical filters preinstalled. We
first extended HojiChar to make it work with paral-
lel corpus and implemented a variety of rules with
careful investigation of the provided data. Table 1
shows the list of data cleaning methods we applied
on the bitext and monolingual data. Table 2 shows
the amount of data after filtering.

The following provides a detailed explanation of
the cleaning rules that were mainly implemented
using tools other than HojiChar.

Character count-based filtering. We qualita-
tively examined the Common Crawl and Extended
Common Crawl datasets. Our analysis revealed
that shorter sequences tend to be noisy. Therefore,
we discarded sequences that were less than or equal
to 200 characters for Japanese and 100 characters
for Chinese, respectively (see (26) in Table 1).
This threshold also helps us retain document-level
data that is suitable for the continual pre-training of
LLMs. To efficiently filter out shorter sequences,
we used the awk command.

Toxic content cleaning. Qualitative analysis of
the Common Crawl data revealed a significant
amount of low-quality toxic contents, such as adult
material, are included in the corpus. To address
this, we applied a toxic content filter to exclude
such samples from our training data ((9) in Ta-
ble 1). For the Japanese data, we used filters origi-
nally implemented in HojiChar.2 For the Chinese
corpus, we defined a list of toxic words based on

2DiscardAdultContentJa in HojiChar.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
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Filter & Cleaner Ja Zh En-Ja Ja-Zh

(1) Discard content having identical source and target ✓ ✓
(2) Discard content with invalid unicode characters ✓ ✓ ✓ ✓
(3) Remove non-printable unicode characters ✓ ✓ ✓ ✓
(4) Apply NFKC normalization ✓ ✓ ✓ ✓
(5) Normalize space-like characters to half-width spaces ✓ ✓ ✓ ✓
(6) Restore escaped HTML symbols ✓ ✓ ✓ ✓
(7) Discard content like progress bars ✓ ✓ ✓ ✓
(8) Discard content having many square brackets ✓ ✓ ✓ ✓
(9) Discard content containing keywords for porn contents ✓ ✓
(10) Discard content containing keywords for online bulletin boards ✓ ✓
(11) Discard content containing part of sequences like word lists ✓ ✓ ✓ ✓
(12) Discard content containing having many punctuations ✓ ✓ ✓ ✓
(13) Discard content containing having many numbers ✓ ✓ ✓ ✓
(14) Reduce repeated space and punctuation characters ✓ ✓ ✓ ✓
(15) Discard content having many same consecutive characters ✓ ✓ ✓ ✓
(16) Discard content having many same consecutive N-grams ✓ ✓ ✓ ✓
(17) Discard content having less punctuations ✓ ✓
(18) Discard content having no punctuations in a sliding window of specified length ✓ ✓
(19) Discard content having low compression ratio with zlib compression ✓ ✓
(20) Discard content not in expected languages ✓ ✓ ✓ ✓
(21) Remove ellipsis symbols ✓ ✓ ✓ ✓
(22) Remove open bracket end symbols at the end of the sentence ✓ ✓ ✓ ✓
(23) Remove parentheses with no content inside ✓ ✓ ✓ ✓
(24) Remove Unicode control characters ✓ ✓ ✓ ✓
(25) Remove content starts with "&" ✓ ✓ ✓ ✓
(26) Discard too short content ✓ ✓
(27) Convert traditional Chinese to simplified Chinese ✓
(28) Exact deduplication ✓ ✓ ✓ ✓
(29) Fuzzy deduplication ✓ ✓
(30) Discard too long content ✓ ✓
(31) Discard content having too large source/target token ratio ✓ ✓
(32) Discard content having too large token/char ratio ✓ ✓
(33) Discard semantically irrelevant translations ✓ ✓

Table 1: List of data cleaning rules.

those used for the ChineseWebText (Chen et al.,
2023) dataset.

Compression rate-based cleaning. We used a
cleaning method based on the compression rate to
remove non-textual data ((19) in Table 1).3 Sam-
ples with a high compression rate typically con-
tain excessive repetitions, while those with a low
compression rate often consist of random strings.
Specifically, we calculated the compression rate for
each sample and removed those that did not fall
within a specified range.

Language detection. To ensure the collection of
data in the target language, we used language detec-
tion (20) in Table 1. Simple heuristic language
detection methods are implemented in Hojichar,
such as a method that checks for the presence of
hiragana or katakana. Alongside these simple
methods, we also used FastText-based language
detection (Joulin et al., 2017b,a).

3We referred to has_good_compression_ratio in
https://github.com/llm-jp/llm-jp-corpus/
blob/main/scripts/filters.py

Conversion of traditional Chinese to simplified
Chinese. We converted Chinese data written in
traditional characters to simplified characters to
augment the bitext data ((27) in Table 1). We
used OpenCC4 for these conversions.

Deduplication. Duplicate data in training sets
can negatively impact the performance of language
models (Lee et al., 2022). To mitigate this, we per-
formed exact deduplication using the sort com-
mand ((28) in Table 1) and fuzzy deduplication
using MinHash (Broder, 1997) ((29) in Table 1).
We used the text-dedup tool (Mou et al., 2023)
for implementation.

Bitext similarity cleaning. We performed clean-
ing based on bitext similarity using LaBSE (Feng
et al., 2022) to filter out semantically irrelevant
pairs ((33) in Table 1). We set the lenient thresh-
old of 0.5 for bitext and more strict threshold of 0.7
to synthetic data.

4https://github.com/BYVoid/OpenCC

https://github.com/llm-jp/llm-jp-corpus/blob/main/scripts/filters.py
https://github.com/llm-jp/llm-jp-corpus/blob/main/scripts/filters.py
https://github.com/BYVoid/OpenCC
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# samples # tokens

LLMs
Monolingual Ja 88.4M 35.8B
Monolingual Zh 137.4M 29.9B
Parallel En-Ja 29.8M 4.0B
Parallel Ja-Zh 3.8M 506.3M

Encoder-Decoder
Synthetic En-Ja 587M 12.9B
Synthetic Ja-Zh 291M 10.3B
Parallel En-Ja 28.2M 730.0M
Parallel Ja-Zh 6.3M 163.6M

Table 2: The amount of training data used for LLMs
and Encoder-Decoder MT models. The token count for
LLMs is based on the tokenizer of Mistral-7B, and the
count for Encoder-Decoder MT models is based on the
subwords on the target side.

3 Primary Translation Models

We developed translation models using two ar-
chitectures: Encoder-Decoder and Decoder-only
(LLMs).

3.1 Encoder-Decoder MT Models

For En→Ja, we used the existing translation mod-
els created by Morishita et al. (2022b); Kudo et al.
(2023). For Ja→Zh, we newly constructed transla-
tion models through pre-training and fine-tuning.

Pre-training. We trained the pre-training model
using the pre-training configuration in Table 7 (Ap-
pendix C). For the training data, we used the bitext
(Section 2.1) and the synthetic data (Section 2.2)
after applying data cleaning (Section 2.3). We
performed upsampling to achieve a 1 : 4.7 ratio
between the bitext and the synthetic data. More-
over, we applied the tagged back-translation tech-
nique (Caswell et al., 2019), adding a special token
<BT> at the beginning of the source sentences in
the synthetic data and storing this tag in the vocab-
ulary dictionary.

Fine-tuning. After pre-training, we conducted
fine-tuning using the development data (Sec-
tion 2.1) with the fine-tuning configuration in Ta-
ble 7 (Appendix C).

3.2 LLM-based MT Models

We used the Llama2-13B (Touvron et al., 2023) and
Mistral-7B (Jiang et al., 2023), which are permitted
for use in the constrained track. These LLMs were
used only for the En→Ja direction and not for the
Ja→Zh direction. For Mistral-7B, we also prepared
a variant with an expanded vocabulary to improve

its Japanese generation capability. For more details
on vocabulary expansion, please refer to Section B.

Continual pre-training. Although the datasets
used for training Llama2 and Mistral are not pub-
licly disclosed, it is generally believed that they
are predominantly in English. Consequently, con-
tinual pre-training has been conducted to enhance
performance on Japanese tasks (Fujii et al., 2024a;
Okazaki et al., 2024). This approach has been re-
ported to improve English-Japanese translation per-
formance. To further boost Japanese language ca-
pability, we also performed continual pre-training
using the cleaned monolingual corpus detailed in
Section 2.3. The training configurations are shown
in Table 8, 9, and 10.

Supervised fine-tuning After continual pre-
training, we conducted supervised fine-tuning for
the translation task. In this phase, we used the
cleaned bitext corpus and development data de-
scribed in Section 2. Initially, we fine-tuned the
model using the bitext corpus, followed by addi-
tional fine-tuning with the development data which
is relatively clean. To prepare for the Stepwise
MBR-Enhanced LLM decoding detailed in Sec-
tion 4.2, we used all combinations of the first n sen-
tences from each document as training samples for
the development data fine-tuning. Figure 2 shows
the prompt template, and Table 8, 9, and 10 shows
hyperparameters used in the training process.

Preference learning. To align the translation re-
sults with human preferences, we conducted prefer-
ence learning for Mistral-7B. 5 We used Contrastive
Preference Optimization (CPO) (Xu et al., 2024)
as the preference learning algorithm. In prelimi-
nary experiments, we also tried Direct Preference
Optimization (DPO) (Rafailov et al., 2023) as an
alternative to CPO. However, despite the decrease
in loss during training, we observed that the DPO
often resulted in output collapse (complete loss
of input-output correspondence) during decoding.
Therefore, we selected CPO as our preference learn-
ing.

Let LNLL(πθ) and Lpref(πθ) be the negative log-
likelihood of πθ and preference of output given by

5Due to computational resource limitations, we applied
LoRA fine-tuning (Hu et al., 2022).
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次の英語を日本人のネイティブのように日本語に翻訳してください。 原文: {src} 訳文: {tgt}

Figure 2: The general prompt for supervised fine-tuning. {src} denotes the source sentence. {tgt} denotes the target
sentence.

πθ, respectively, that is:

LNLL(πθ) = −E(s,r)∼D [log πθ(r | s)]
Lpref(πθ) = −E(s,r,yr)∼D [log σ(βd)]

d = log πθ(r | s)− log πθ(ŷ | s)
, (1)

where σ is the Sigmoid function. Then, CPO mini-
mizes the following objective function during train-
ing:

min
θ

[Lpref(πθ) + αLNLL(πθ)] . (2)

Here, D =
{(

s(i), r(i), ŷ(i)
)}N

i=1
represents the

dataset. πθ denotes a parameterized policy, and α
and β are hyperparameters. We used the develop-
ment data for training in preference learning. In
this context, s corresponds to the source text from
the development data, r to the reference text from
the development data, and ŷ to the output of the
model before preference learning.

To prevent the model output from collapsing, we
introduced a minor modification to the CPO ob-
jective function. Specifically, we implemented a
warm-up phase to reduce the impact of the prefer-
ence learning loss at the beginning of training. This
approach is formulated as follows:

min
θ

[
min

(
1,

i

iw

)
Lpref(πθ) + αLNLL(πθ)

]
.

(3)
Here, i represents the number of training steps, and
iw denotes the number of warm-up steps for the
preference learning loss.

4 Decoding

This year’s test set consists of segments with mul-
tiple sentences in context. Since most bitext cor-
pora are at the sentence level, translating larger
segments in one shot is not preferable. Thus, we
initially divided each segment in the test set into
individual sentences using spaCy (Honnibal et al.,
2020).6 In case the resulting split was overly short,
we combined texts from its adjacent splits.

6We used “en_core_web_lg” model for English and
“ja_core_news_lg” model for Japanese.

hypotheses pseudo-references

top-p sampling epsilon sampling

En→Ja 1272.15 3288.5 3421.99
Ja→Zh 261.84 884.11 3108

Table 3: The average number of hypotheses and pseudo
references for each source sentence generated by the
Encoder-Decoder MT models. Note that due to errors
during decoding, the number of hypotheses and pseudo-
references generated for a single source sentence varies.

4.1 MBR Decoding
We apply minimum Bayes risk (MBR) decod-
ing (Eikema and Aziz, 2020) to select high-quality
translations from the set of hypotheses gener-
ated by the multiple translation models using
MBRS (Deguchi et al., 2024). Let Y be the out-
put space of translation models. We use the
Monte Carlo method to estimate the expected util-
ity (Eikema and Aziz, 2022), as follows:

yMBR = argmax
h∈H

E
r̂∈R̂

[u(h, r̂)] ,

= argmax
h∈H

1

|R̂|

∑
r̂∈R̂

u(h, r̂), (4)

where yMBR is the selected translation by MBR
decoding, H ⊆ Y is the hypotheses set, and R̂
is the multiset (a.k.a bag) of translation samples7,
called “pseudo-references”. u : Y × Y → R is
the utility function that returns scores of the trans-
lation quality of the hypothesis under the given
pseudo-references, which is formally defined as
h ⪰ h′ ⇐⇒ u(h, r̂) ≥ u(h′, r̂) where ⪰ de-
notes the preference relation. We employ COMET-
228 (Rei et al., 2020, 2022) for the utility function
u. Therefore, the MBR decoding using COMET-22
is formulated as follows:

yMBR = argmax
h∈H

1

|R̂|

∑
r̂∈R̂

COMET-22(s, h, r̂).

(5)
Note that COMET-22 also takes the source sen-
tence s as input.

7The support set is a subset of the output space, i.e.,
Supp(R̂) ⊆ Y

8https://huggingface.co/Unbabel/
wmt22-comet-da

https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
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In our system, we select the 30-best translations
using MBR decoding instead of selecting the 1-
best translation as shown in Equation 4 to deter-
mine the final decision using another algorithm
than MBR decoding. In other words, MBR decod-
ing is used to prune translation hypotheses. We
generate hypotheses for each source sentence using
an ensemble of Encoder-Decoder MT models with
beam search decoding. In addition, we prepare two
types of pseudo-references by decoding with top-p
sampling (p = 0.9) and epsilon sampling (Freitag
et al., 2023) (ϵ = 0.02). The number of hypotheses
and pseudo-references used in MBR decoding is
presented in Table 3.

4.2 Stepwise MBR-Enhanced LLM Decoding

Algorithm 1: Stepwise MBR-Enhanced
LLM decoding
Input: Dsrc = {s0, s1, . . . , sn}
Output: Dhyp = {h0, h1, . . . , hn}

1 Dtgt ← {};
2 Shist ← {};
3 for i← 0 to n do

// Generate candidates for
si

4 H ← LLMsMT(si, Shist, Dtgt);
5 hi ← MBR(H,H);
6 Dtgt ← Dhyp ∪ {hi};
7 Shist ← Shist ∪ {si};
8 return Dhyp

During our preliminary experiments with fine-
tuned LLMs, we observed frequent issues where
some sentences were skipped during decoding.
This led to discrepancies in the number of sen-
tences between the source and the translated
output. Additionally, we observed samples
where the same token was generated repeatedly.
To address these issues, we propose a decod-
ing method called Stepwise MBR-Enhanced
LLM Decoding (Algorithm 4.2). This method
translates documents sentence by sentence, consid-
ering the overall document context (see Figure 3).
This approach resolves the issue of mismatched
sentence counts between the source and hypoth-
esis. Furthermore, we applied MBR decoding
to achieve high-quality sentence-level translation
without repeated tokens or other errors (line 5 of
Algorithm 4.2). We used the outputs of four LLMs
for this method. Specifically, we used four LLMs

with different settings: Mistral-7B with and without
vocab expansion and with and without preference
learning.

5 LLM Reranking

As mentioned in Section 3 and Section 4, primary
translation models decode at the sentence level. To
improve the overall document-level consistency of
the translation results, we performed reranking us-
ing LLMs. We used the top 30 highest-scoring
hypotheses from MBR decoding as the candidate
pool and reranked them based on context-aware
scoring. Specifically, we used the LLMs fine-tuned
for the translation task described in Section 3.2
to calculate the likelihood of each hypothesis with
context information. We repeated this process to se-
lect hypotheses with the highest likelihood scores,
resulting in the final translation output. The details
are described in Algorithm 2. In our system, we use
supervised fine-tuned Mistral-7B as the reranker,
and we set the beam size to b = 2.

Algorithm 2: LLM Reranking Algorithm
Input: Dsrc = {s0, s1, . . . , sn}
Input: Dhyps = {H0, H1, . . . ,Hm}
Input: b: Beam size
Output: Dhyp = {h0, h1, . . . , hn}

1 Cbeam ← {(∅,−∞)};
2 P ← ∅;
3 for H ∈ Dhyps do
4 for (c, _) ∈ Cbeam do
5 for h ∈ H do
6 ph ← LLMMT(Dsrc, c ∪ {h});
7 P ← P ∪ {(c, h, ph)};

8 Tb ← Topb (P, with respect to ph);
9 Cbeam ←

{(c ∪ {h}, ph) | (c, h, ph) ∈ Tb};
10 (c∗, p∗c)← argmax(c, pc)∈Cbeam

pc;
11 Dhyp ← c∗;
12 return Dhyp

6 Post processing

Finally, we applied the following postprocessing
rules to the selected translations. The rules are
designed based on alignment errors commonly seen
in the model translations of the development sets.

• Apply NFKC normalization
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次の英語を日本人のネイティブのように日本語に翻訳してください。
原文: {src0} {src1} {src2} 訳文: {hyp0} {hyp1}

Figure 3: The prompt for stepwise MBR-enhanced LLM decoding from English to Japanese. This is an example
for translating {src2}. {src0} and {src1} correspond to Shist in Algorithm 1, and {src2} corresponds to si in
Algorithm 1. Line breaks are added for readability; there are no them in the actual prompt.

• Append an emoji to the end of the hypotheses
if it’s present at the end of the source sentence

• Replace Japanese brackets (「」) to its Chi-
nese counterparts (“”) (Ja→Zh only)

• Replace Japanese commas (、) to its Chinese
counterparts (,) (Ja→Zh only)

• Remove whitespaces before and after paren-
theses

• Remove whitespaces before and after com-
mas, periods, exclamations, and question
marks

• Fix letter case of alphabets in the hypotheses
to match its counterparts in the source sen-
tence

• Fix punctuations in the hypotheses to match
their counterparts in the source sentence

7 Post Evaluation

We evaluated the performance of our system using
automatic evaluation metrics. Specifically, using
this year’s test set as the evaluation data, we con-
ducted the evaluation using COMET-229 (Rei et al.,
2022), MetricX-XL10 (Juraska et al., 2023), and
CometKiwi-XL11 (Rei et al., 2023) as the evalu-
ation metrics. Note that, since several segments
in this year’s WMT test set contain multiple sen-
tences, the scores could not be computed at the
sentence level.

The results of the post-evaluation from En→Ja
are presented in Table 4, while those for the Ja→Zh
direction are shown in Table 5. In these tables,
“VE” refers to the vocabulary-expanded model, and
“CPO” refers to the model where Contrastive Pref-
erence Optimization was performed. Addition-
ally, “EncDec” represents outputs from Encoder-
Decoder MT models, “MBR (top-p)” refers to the
case where MBR decoding was performed using
pseudo references generated by top-p sampling,
and “MBR (epsilon)” refers to the case where ep-
silon sampling was used.

9https://huggingface.co/Unbabel/
wmt22-comet-da

10https://huggingface.co/google/
metricx-23-xl-v2p0

11https://huggingface.co/Unbabel/
wmt23-cometkiwi-da-xl

Performance of the LLM-based MT models.
Table 4 shows that the translation performance of
Llama2-13B is lower than that of Mistral-7B. One
potential reason for this is the limited amount of
data used for continual pre-training of Llama2-13B
due to constraints in computational resources.

Efficiency of vocabulary expansion. Compar-
ing the models with and without vocabulary ex-
pansion ((b) vs. (d)), there is no significant
difference in performance. However, as shown in
Table 13, the model with vocabulary expansion re-
quires fewer training tokens than the model without
it in our settings. The generation speed is also faster
for the model with vocabulary expansion compared
to the one without it. Thus, we believe vocabulary
expansion could be a good option for improved
inference efficiency.

CPO is effective but challenging. Comparing
the performance before and after preference learn-
ing, the model with vocabulary expansion shows
improvement across all evaluation metrics ((d) vs.
(e)). On the other hand, the model without vocab-
ulary expansion exhibits a significant decrease in
performance for COMET-22 and CometKiwi-XL
((b) vs. (c)), leading to inconsistent results.

Qualitative analysis of outputs from the model
without vocabulary expansion (i.e., (c)) revealed
instances where decoding of byte-fallbacked text
failed, resulting in text being replaced with replace-
ment characters. This may be due to insufficient
adjustment of the hyperparameters during CPO
training.

Difference in pseudo references for MBR decod-
ing. Comparing settings (A) vs. (B) and (C),
we observe that the performance improves when
using MBR decoding compared to the 1-best out-
put from the ensemble of models12. The difference
in performance with regard to the pseudo-reference
generation algorithms ((i) vs. (j) and (B) vs.
(C)) was not significant.

12In the En→Ja, we use results from multiple models with
different vocabularies for MBR decoding; hence we cannot
compare the performance with the 1-best output from the
ensemble of all transformers.

https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/google/metricx-23-xl-v2p0
https://huggingface.co/google/metricx-23-xl-v2p0
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl
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COMET-22↑ MetricX-XL↓ CometKiwi-XL↑

(a) Llama2-13B 0.820 3.050 0.677
(b) Mistral-7B 0.841 2.806 0.711
(c) Mistral-CPO-7B 0.651 2.254 0.557
(d) Mistral-VE-7B 0.836 2.881 0.695
(e) Mistral-VE-CPO-7B 0.866 2.254 0.732
(f) NT5 (Morishita et al., 2022b) 0.847 2.697 0.718

(g) Stepwise MBR-Enhanced LLM Decoding 0.882 2.052 0.729
(i) EncDec→MBR (top-p) 0.885 2.263 0.737
(j) EncDec→MBR (epsilon) 0.884 2.264 0.743
(k) EncDec→MBR (top-p)→ LLM Reranking 0.881 2.269 0.740

Table 4: Results of post evaluation in En→Ja.

COMET-22↑ MetricX-XL↓ CometKiwi-XL↑

(A) EncDec ensemble 0.818 3.550 0.548
(B) EncDec→MBR (top-p) 0.841 3.168 0.570
(C) EncDec→MBR (epsilon) 0.841 3.230 0.566

Table 5: Results of post evaluation in Ja→Zh.

Performance of stepwise MBR-enhanced LLM
decoding. Stepwise MBR-Enhanced
LLM Decoding achieves the highest score on
MetricX-XL. Additionally, compared to using
a single LLM, the scores of COMET-22 and
MetricX-XL improved. This improvement is likely
because generating hypotheses at each step with
MBR decoding helps eliminate obvious errors,
such as repeated tokens.

Effectiveness of LLM reranking. LLM Rerank-
ing did not result in any significant improvements
according to automatic evaluation metrics. How-
ever, we noted improved consistency within seg-
ments qualitatively. We intend to evaluate perfor-
mance through human evaluation as part of future
work.

8 Submission System

For the final submission system, we adopted system
(k) for the En→Ja direction and system (B) for
the Ja→Zh direction. However, particularly in the
En→Ja direction, different systems ranked highest
across various automatic evaluation metrics, leav-
ing us uncertain about which system to select even
after post-evaluation. Thus, further refinement of
automatic evaluation metrics is essential to develop
a superior system.

9 Negative Results and Discarded Trials

Poor performance of LLMs for Japanese-to-
Chinese translation. We conducted continual
pre-training and supervised fine-tuning of LLMs
for Ja→Zh translation. However, the translation
performance did not meet our expectations, leading
us to exclude it from the submission system (see
Table 5 for post evaluation results). This shortfall
likely resulted from our computational resource
constraints, which limited continual pre-training to
Chinese datasets only. For further details, please
refer to Section A.

Use of LLM outputs as candidates for MBR de-
coding. We also explored the inclusion of LLM
outputs in the candidate pool for MBR Decoding.
However, we observed a decrease in translation
quality when these outputs were included, leading
us to exclude this approach from the final system.
This decline in quality can be attributed to two
main factors: i). a substantial difference in the dis-
tribution between the outputs generated by LLMs
and the pseudo references produced by Encoder-
Decoder MT models, and ii). inadequate tuning of
hyperparameters during decoding with LLMs.

10 Conclusion

This paper described our systems for the con-
strained track of the WMT 2024 Shared Task: Gen-
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eral Machine Translation. We developed transla-
tion systems for En→Ja and Ja→Zh. To achieve
consistent document-level machine translation, we
concentrated on investigating the application of
LLMs, which have become available for use this
year, employing methods such as LLM Reranking
and Stepwise MBR-Enhanced LLM Decoding.

Our submitted system consists of the following
steps: i) First, we generate translations using mul-
tiple Encoder-Decoder MT models. ii) Next, we
narrow down the generated candidates by selecting
the optimal translation through MBR decoding. iii)
Finally, we apply LLM reranking to incorporate
contextual information in order to determine the
final output (only for En→Ja). The results from the
post-evaluation did not provide quantitative con-
firmation of the final submission system’s effec-
tiveness. However, we did observe a qualitative
improvement in consistency within the documents.
We hope for future research on better automatic
evaluation metrics that can assess these document-
level translation performances.

Acknowledgments

We would like to thank the member of the Tohoku
NLP Group and NAIST NLP Laboratory for their
cooperation in conducting this research. We would
like to especially thank Mengyu Ye, Yunmeng Li,
Qin Dai, Zhang Ying, and Suchun Xie for their
advice on constructing clean Chinese datasets.

This work was supported by Moonshot R&D
Grant Number JPMJMS2011 (fundamental re-
search) and JST BOOST, Japan Grant Number JP-
MJBS2421 and JPMJBS2423.

Contributions

Keito Kudo conducted the cleaning of the mono-
lingual data, trained and decoded LLM-based MT
models, developed the Ja→Zh Encoder-Decoder
MT models, and performed post-evaluations.
Hiroyuki Deguchi conducted MBR decoding.
Makoto Morishita cleaned the monolingual and
bitext data, pre-trained and fine-tuned the Ja→Zh
translation model.
Ryo Fujii designed and implemented rules for fil-
tering and post-processing, and performed qualita-
tive evaluation of the resulting translations.
Takumi Ito designed and customized Hojichar for
data cleaning, and designed and implemented Sec-
tion 4.2.

Shintaro Ozaki, Koki Natsumi conducted pre-
training and fine-tuning of the Ja→Zh Encoder-
Decoder MT models, along with back-translation.
Kai Sato, Kazuki Yano implemented filters for
data cleaning.
Ryosuke Takahashi implemented filters for data
cleaning, conducted preference learning, and pre-
pared scripts for decoding.
Subaru Kimura conducted the cleaning of the
monolingual data, implemented checkpoint aver-
aging, fine-tuned the LLM-based MT models, and
implemented post-processing.
Tomomasa Hara implemented filters for the clean-
ing of the monolingual data and performed hyper-
parameter tuning for LLM-based MT models.
Yusuke Sakai managed the training process for the
Ja→Zh Encoder-Decoder MT models.
Jun Suzuki provided the primary computational
budget and overall project advice and carried out
the decoding of NT5.

References
A.Z. Broder. 1997. On the resemblance and con-

tainment of documents. In Proceedings. Compres-
sion and Complexity of SEQUENCES 1997 (Cat.
No.97TB100171), pages 21–29.

Christian Buck, Kenneth Heafield, and Bas van Ooyen.
2014. N-gram Counts and Language Models from
the Common Crawl. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), pages 3579–3584, Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Isaac Caswell, Ciprian Chelba, and David Grangier.
2019. Tagged back-translation. In Proceedings of the
Fourth Conference on Machine Translation (Volume
1: Research Papers), pages 53–63, Florence, Italy.
Association for Computational Linguistics.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web Inventory of Transcribed
and Translated Talks. In Proceedings of the 16th
Annual Conference of the European Association for
Machine Translation, pages 261–268, Trento, Italy.
European Association for Machine Translation.

Jianghao Chen, Pu Jian, Tengxiao Xi, Dongyi Yi, Qian-
long Du, Chenglin Ding, Guibo Zhu, Chengqing
Zong, Jinqiao Wang, and Jiajun Zhang. 2023. Chine-
sewebtext: Large-scale high-quality chinese web text
extracted with effective evaluation model. Preprint,
arXiv:2311.01149.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised

https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1097_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1097_Paper.pdf
https://doi.org/10.18653/v1/W19-5206
https://aclanthology.org/2012.eamt-1.60
https://aclanthology.org/2012.eamt-1.60
https://arxiv.org/abs/2311.01149
https://arxiv.org/abs/2311.01149
https://arxiv.org/abs/2311.01149
https://doi.org/10.18653/v1/2020.acl-main.747


219

Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Hiroyuki Deguchi, Yusuke Sakai, Hidetaka Kami-
gaito, and Taro Watanabe. 2024. mbrs: A li-
brary for minimum bayes risk decoding. Preprint,
arXiv:2408.04167.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Bryan Eikema and Wilker Aziz. 2020. Is MAP decoding
all you need? the inadequacy of the mode in neural
machine translation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4506–4520, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Bryan Eikema and Wilker Aziz. 2022. Sampling-based
approximations to minimum Bayes risk decoding
for neural machine translation. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 10978–10993, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Christian Federmann, Tom Kocmi, and Ying Xin. 2022.
NTREX-128 – News Test References for MT Evalu-
ation of 128 Languages. In Proceedings of the First
Workshop on Scaling Up Multilingual Evaluation,
pages 21–24, Online. Association for Computational
Linguistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT Sentence Embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 878–891, Dublin,
Ireland. Association for Computational Linguistics.

Patrick Fernandes, António Farinhas, Ricardo Rei,
José G. C. de Souza, Perez Ogayo, Graham Neubig,
and Andre Martins. 2022. Quality-aware decoding
for neural machine translation. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1396–1412,
Seattle, United States. Association for Computational
Linguistics.

Markus Freitag, Behrooz Ghorbani, and Patrick Fernan-
des. 2023. Epsilon sampling rocks: Investigating
sampling strategies for minimum Bayes risk decod-
ing for machine translation. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 9198–9209, Singapore. Association for
Computational Linguistics.

Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hi-
roki Iida, Masanari Ohi, Kakeru Hattori, Hirai Shota,

Sakae Mizuki, Rio Yokota, and Naoaki Okazaki.
2024a. Continual Pre-Training for Cross-Lingual
LLM Adaptation: Enhancing Japanese Language Ca-
pabilities. Preprint, arXiv:2404.17790.

Kazuki Fujii, Taishi Nakamura, and Rio Yokota. 2024b.
llm-recipes.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at the
Leipzig corpora collection: From 100 to 200 lan-
guages. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 759–765, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 Evaluation
Benchmark for Low-Resource and Multilingual Ma-
chine Translation. Transactions of the Association
for Computational Linguistics, 10:522–538.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. The
FLORES Evaluation Datasets for Low-Resource
Machine Translation: Nepali–English and Sinhala–
English. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6098–6111, Hong Kong, China. Association for Com-
putational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on
Learning Representations.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. Preprint,
arXiv:2310.06825.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Herve Jegou, and Tomas Mikolov.
2017a. FastText.zip: Compressing text classification
models.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017b. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.747
https://arxiv.org/abs/2408.04167
https://arxiv.org/abs/2408.04167
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2022.emnlp-main.754
https://doi.org/10.18653/v1/2022.emnlp-main.754
https://doi.org/10.18653/v1/2022.emnlp-main.754
https://aclanthology.org/2022.sumeval-1.4
https://aclanthology.org/2022.sumeval-1.4
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2023.findings-emnlp.617
https://doi.org/10.18653/v1/2023.findings-emnlp.617
https://doi.org/10.18653/v1/2023.findings-emnlp.617
https://arxiv.org/abs/2404.17790
https://arxiv.org/abs/2404.17790
https://arxiv.org/abs/2404.17790
https://github.com/okoge-kaz/llm-recipes
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=SJc1hL5ee
https://openreview.net/forum?id=SJc1hL5ee
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068


220

Juraj Juraska, Mara Finkelstein, Daniel Deutsch, Aditya
Siddhant, Mehdi Mirzazadeh, and Markus Freitag.
2023. MetricX-23: The Google Submission to the
WMT 2023 Metrics Shared Task. In Proceedings
of the Eighth Conference on Machine Translation,
pages 756–767, Singapore. Association for Compu-
tational Linguistics.

Seungduk Kim, Seungtaek Choi, and Myeongho Jeong.
2024. Efficient and effective vocabulary expansion
towards multilingual large language models. CoRR,
abs/2402.14714.

Keito Kudo, Takumi Ito, Makoto Morishita, and Jun
Suzuki. 2023. SKIM at WMT 2023 general transla-
tion task. In Proceedings of the Eighth Conference
on Machine Translation, pages 128–136, Singapore.
Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 66–71. Association for Computational Linguis-
tics.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445, Dublin, Ireland. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
stochastic gradient descent with warm restarts. In
5th International Conference on Learning Represen-
tations, ICLR, Toulon, France, April 24-26, 2017,
Conference Track Proceedings.

Makoto Morishita, Katsuki Chousa, Jun Suzuki, and
Masaaki Nagata. 2022a. JParaCrawl v3.0: A Large-
scale English-Japanese Parallel Corpus. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 6704–6710, Marseille,
France. European Language Resources Association.

Makoto Morishita, Keito Kudo, Yui Oka, Katsuki
Chousa, Shun Kiyono, Sho Takase, and Jun Suzuki.
2022b. NT5 at WMT 2022 General Translation
Task. In Proceedings of the Seventh Conference on
Machine Translation (WMT), pages 318–325, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Chenghao Mou, Chris Ha, Kenneth Enevoldsen, and
Peiyuan Liu. 2023. Chenghaomou/text-dedup: Ref-
erence snapshot.

Masaaki Nagata, Makoto Morishita, Katsuki Chousa,
and Norihito Yasuda. 2024. A Japanese-Chinese Par-
allel Corpus Using Crowdsourcing for Web Mining.
Preprint, arXiv:2405.09017.

Graham Neubig. 2011. The Kyoto Free Translation
Task. http://www.phontron.com/kftt.

Naoaki Okazaki, Kakeru Hattori, Hirai Shota, Hiroki
Iida, Masanari Ohi, Kazuki Fujii, Taishi Nakamura,
Mengsay Loem, Rio Yokota, and Sakae Mizuki. 2024.
Building a Large Japanese Web Corpus for Large
Language Models. Preprint, arXiv:2404.17733.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Reid Pryzant, Youngjoo Chung, Dan Jurafsky, and
Denny Britz. 2018. JESC: Japanese-English Subtitle
Corpus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems, volume 36,
pages 53728–53741. Curran Associates, Inc.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022. COMET-22: Unbabel-IST 2022 Submission
for the Metrics Shared Task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Ricardo Rei, Nuno M. Guerreiro, JosÃ© Pombal, Daan
van Stigt, Marcos Treviso, Luisa Coheur, José G.
C. de Souza, and André Martins. 2023. Scaling up
CometKiwi: Unbabel-IST 2023 submission for the
quality estimation shared task. In Proceedings of the
Eighth Conference on Machine Translation, pages
841–848, Singapore. Association for Computational
Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A Neural Framework for MT
Evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2021. Wiki-
Matrix: Mining 135M Parallel Sentences in 1620
Language Pairs from Wikipedia. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 1351–1361, Online. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.48550/ARXIV.2402.14714
https://doi.org/10.48550/ARXIV.2402.14714
https://doi.org/10.18653/v1/2023.wmt-1.9
https://doi.org/10.18653/v1/2023.wmt-1.9
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://aclanthology.org/2022.lrec-1.721
https://aclanthology.org/2022.lrec-1.721
https://aclanthology.org/2022.wmt-1.25
https://aclanthology.org/2022.wmt-1.25
https://doi.org/10.5281/zenodo.8364980
https://doi.org/10.5281/zenodo.8364980
https://arxiv.org/abs/2405.09017
https://arxiv.org/abs/2405.09017
https://arxiv.org/abs/2404.17733
https://arxiv.org/abs/2404.17733
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://aclanthology.org/L18-1182
https://aclanthology.org/L18-1182
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115


221

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving Neural Machine Translation Mod-
els with Monolingual Data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 86–96. Association
for Computational Linguistics.

Kenta Shinzato. 2023. HojiChar: The text processing
pipeline.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No Language Left Behind: Scaling
Human-Centered Machine Translation. Preprint,
arXiv:2207.04672.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models. Preprint, arXiv:2307.09288.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
and Shengyi Huang. 2020. Trl: Transformer re-
inforcement learning. https://github.com/
huggingface/trl.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet: Ex-
tracting High Quality Monolingual Datasets from
Web Crawl Data. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
4003–4012, Marseille, France. European Language
Resources Association.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024. Contrastive Prefer-
ence Optimization: Pushing the Boundaries of LLM
Performance in Machine Translation. In Forty-first
International Conference on Machine Learning.

https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://github.com/HojiChar/HojiChar
https://github.com/HojiChar/HojiChar
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=51iwkioZpn
https://openreview.net/forum?id=51iwkioZpn
https://openreview.net/forum?id=51iwkioZpn


222

请像中国本地人一样将以下日语翻译成中文。

原文: {src}译文: {tgt}

Figure 4: The general prompt for supervised fine-tuning.
{src} denotes the source sentence. {tgt} denotes the
target sentence. Line breaks are added for readability;
there are no them in the actual prompt.

COMET-22↑ MetricX↓ CometKiwi↑

Llama2-13B 0.754 4.763 0.503
Mistral-7B 0.795 4.410 0.547

EncDec ensemble 0.818 3.550 0.548

Table 6: Post evaluation results of the LLM trained
for Ja→Zh translation. Compared to the ensemble of
Encoder-Decoder MT models, the performance of the
LLM for Ja→Zh translation was not sufficient.

A Japanese-Chinese LLM

Training configurations. We trained LLMs for
Ja→Zh translation, although these were not in-
cluded in the final system. Due to time and com-
putational resource constraints, we only conducted
continual pre-training and supervised fine-tuning
on Chinese monolingual corpora. During super-
vised fine-tuning, we used the template shown in
Figure 4. Table 12, 13 lists the hyperparameters
used for training in the Ja→Zh direction.

Post evaluation. We conducted evaluations for
the LLMs trained for the Ja→Zh translation. Ta-
ble 6 presents the results. The performance of the
LLMs in the Ja→Zh translation was insufficient
compared to the ensemble of Encoder-Decoder MT
models. This is likely because we were limited to
continual pre-training using only Chinese corpora
due to computational resource constraints.

B Vocabulary Expansion for LLM

As described in Section 3.2, we aimed to improve
the Japanese language generation capability of
Mistral-7B by expanding the model’s vocabu-
lary. Here, we provide details on the vocabulary
expansion.

Construction of additional vocabulary. We
first constructed a Japanese vocabulary using
the unigram algorithm of the Sentencepiece
tool (Kudo and Richardson, 2018). This vocabu-
lary was trained on a subset of 30,000,000 samples
from the Japanese Monolingual Corpus. We set
the vocabulary size to 27,000. During vocabulary

training, we enabled the options "byte_fallback"
and "split_digits".

Vocabulary initialization. We initialized the em-
beddings for the additional vocabulary using the
weighted average of the original Mistral embed-
dings. The weights were determined based on the
similarity scores between the new and original Mis-
tral vocabularies, computed by LaBSE (Feng et al.,
2022). The process is described by the following
equation:

vnew =

N∑
i=1

(
exp(wi)∑N
j=1 exp(wj)

)
vi

=
N∑
i=1

softmax(wi)vi

(6)

Here, vnew represents the embedding for the ad-
ditional vocabulary, wi is the similarity score be-
tween the additional vocabulary and vocabulary
entry i as calculated by LaBSE, vi is the vector of
the existing vocabulary entry i, and n is the size of
the original vocabulary. This method was also used
to initialize the language modeling head.

Given our focus on the English-to-Japanese
translation task, vocabularies other than English
and Japanese are considered less critical. There-
fore, we replaced any vocabulary not identified as
Japanese, English, or special tokens with the new
additional vocabulary. The determination of the
language for each token followed these rules:

Japanese: Tokens consisting of hiragana,
katakana, common-use kanji, symbols, JIS
level 1 kanji, and ASCII characters

English: Tokens consisting solely of ASCII char-
acters

Special tokens: Tokens split by byte fallback, as
well as bos, eos tokens, etc.

Consequently, we expanded the vocabulary to
51,200.

Vocabulary warmup training. To address incon-
sistencies introduced by adding new vocabulary,
prior research has proposed gradually training the
model while fixing specific parameters after adding
the vocabulary (Kim et al., 2024). We adopted
a similar method to resolve these inconsistencies.
Initially, we fixed the parameters of all transformer
layers except for the embedding layer and the lan-
guage modeling head and conducted the training.
The hyperparameters used during this initial train-
ing phase are detailed in Table 11.
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C Training Hyperparameters

The hyperparameters during the training of each
model are shown in Table 7- 13.

Initial Translation Model

Subword Size 32,000
Architecture Transformer (big) with 6 layers,

Encoder and Decoder FFN size of
8,192

Optimizer Adam
β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8,
weight_decay = 0.0

Learning Rate Schedule Inverse square root decay, Cosine
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.1
Gradient Clip 1.0
Batch Size 1,048,576 tokens
Max Number of Updates 50,000 steps
Averaging Save a checkpoint every 500 steps

and average the last ten
Implementation fairseq (Ott et al., 2019)

Pre-training Configuration

Subword Size 16,000
Architecture 1 Transformer (big) with 9 layers,

Encoder FFN size of 16,384, and
Decoder FFN size of 4,096

Architecture 2 Transformer (big) with 9 layers,
Encoder and Decoder FFN size of
8,192

Optimizer Adam
β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8,
weight_decay = 0.0

Learning Rate Schedule Inverse square root decay, Cosine
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.1
Gradient Clip 0.1
Batch Size 1,048,576 tokens
Max Number of Updates 50,000 steps
Averaging Save a checkpoint every 500 steps

and average the last ten
Implementation fairseq (Ott et al., 2019)

Fine-tuning Configuration

Learning Rate Schedule Fixed
Warmup Steps N/A
Max Learning Rate 1× 10−5

Dropout 0.2
Gradient Clip 1.0
Batch Size 14,400 tokens
Max Number of Updates 1,000 steps
Averaging Save a checkpoint every ten steps

and average the last ten

Table 7: List of hyper-parameters. We used the initial
translation model to generate synthetic data, the pre-
training configuration to build the models described in
Section 3.1, and the fine-tuning configuration to develop
the models for submission. We created two models for
pre-training and fine-tuning, labeled as “Architecture 1”
or “Architecture 2,” and used them for ensembling. The
hyperparameters listed in the fine-tuning configuration
represent only the differences from the pre-training con-
figuration.
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Llama2-13B Pretraining

Vocab Size 32,000
Train Steps 10,000
Batch Size 1,572,864 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 250
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 100 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Llama2-13B Supervised Finetuning

Vocab Size 32,000
Train Steps 3,500
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 175
Max Learning Rate 3× 10−6

Min Learning Rate 3× 10−7

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 100 steps

and average the last three
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Table 8: A list of hyperparameters used when training
Llama2-13B on the En→Ja task.

Mistral-7B Pretraining

Vocab Size 32,000
Train Steps 20,000
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 500
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B Supervised Finetuning

Vocab Size 32,000
Train Steps 3,100
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 155
Max Learning Rate 1× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last three
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B Preference Learning

Vocab Size 32,000
Train Steps 250
Batch Size 144 samples
Learning Rate Schedule Constant
Learning Rate 1× 10−5

Optimizer Adam
β1 = 0.9, β2 = 0.999,
ϵ = 1× 10−8,
weight_decay = 0.1

Gradient Clip 1.0
CPO β 0.1
CPO α 1.5
iw (See Section 3.2) 740
Lora r 16
Lora α 32
Lora Dropout 0.1
Lora Target Layetr All linear layer
Implementation Transformers (Wolf et al.,

2020), TRL (von Werra et al.,
2020)

Table 9: A list of hyperparameters used when training
Mistral-7B on the En→Ja task.
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Mistral-7B (vocab expanded) Pretraining

Vocab Size 51,200
Train Steps 12,283
Batch Size 1,376,256 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 300
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B (vocab expanded) Supervised Finetuning

Vocab Size 51,200
Train Steps 2,000
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 100
Max Learning Rate 1× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last two
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B (vocab expanded) Preference Learning

Vocab Size 51,200
Train Steps 250
Batch Size 144 samples
Learning Rate Schedule Fixed
Learning Rate 1× 10−5

Optimizer Adam
β1 = 0.9, β2 = 0.999,
ϵ = 1× 10−8,
weight_decay = 0.1

Gradient Clip 1.0
CPO β 0.1
CPO α 1.5
iw (See Section 3.2) 740
Lora r 16
Lora α 32
Lora Dropout 0.1
Lora Target Layer All linear layers
Implementation Transformers (Wolf et al.,

2020), TRL (von Werra et al.,
2020)

Table 10: A list of hyperparameters used when training
Mistral-7B with vocabulary expansion on the En→Ja
task.

Mistral-7B (vocab extended) Vocabulary Warmup

Vocab Size 51,200
Train Steps 1800
Batch Size 1,376,256 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 50
Max Learning Rate 2× 10−4

Min Learning Rate 6.6× 10−7

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Table 11: A list of hyperparameters used when training
Mistral-7B with vocabulary expansion for vocabulary
warmup on the En→Ja task.

Llama2-13B Pretraining

Vocab Size 32,000
Train Steps 10,000
Batch Size 1,572,864 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 250
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 100 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Llama2-13B Supervised Finetuning

Vocab Size 32,000
Train Steps 500
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 25
Max Learning Rate 3× 10−6

Min Learning Rate 3× 10−7

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 25 steps

and average the last three
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Table 12: A list of hyperparameters used when training
Llama2-13B on the Ja→Zh task.
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Mistral-7B Pretraining

Vocab Size 32,000
Train Steps 20,000
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 500
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B Supervised Finetuning

Vocab Size 32,000
Train Steps 420
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 25
Max Learning Rate 1× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 10 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Table 13: A list of hyperparameters used when training
Mistral-7B on the Ja→Zh task.
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