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Abstract 

This paper describes the TSU HITS team’s 

submission system for the WMT’24 

general translation task. We focused on 

exploring the capabilities of discrete 

diffusion models for the English-to-

{Russian, German, Czech, Spanish} 

translation tasks in the constrained track. 

Our submission system consists of a set of 

discrete diffusion models for each language 

pair. The main advance is using a separate 

length regression model to determine the 

length of the output sequence more 

precisely. 

1 Introduction 

This report gives an overview of TSU HITS 

submissions in the WMT 2024 general machine 

translation tasks. We focused on exploring the 

capabilities of discrete diffusion models for the 

English-to-{Russian, German, Czech, Spanish} 

translation tasks in the constrained track. Our main 

contributions are  

1. the use of regression-based output length 

prediction model 

2. the use of the input length as a key feature 

for the output length prediction 

The report is organized as follows. In the Section 

2, we provide a general description of the discrete 

diffusion approach to machine translation, as it is 

not yet very widespread. In the Section 3, we 

describe the experimental setting and training 

processes. Section 4 discusses the results. 

2 Discrete Diffusion Approach to 

Machine Translation 

2.1 Diffusion: Preliminaries 

Diffusion approaches (Sohl-Dickstein et al., 2015 , 

Ho et al, 2020) to generating objects (for example 

images) include forward (data to noise) and reverse 

(noise to data) diffusion processes. In the forward 

process, a small amount of noise is gradually added 

to the data. In the classical direct diffusion process, 

the original object 𝑥0 is repeatedly and additively 

perturbed by a small Gaussian random noise, and 

in a fixed number of steps 𝑇 goes into state 𝑥𝑇 with 

a normal distribution (and thus is converted to 

noise): 

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(𝑥𝑡;  𝑥𝑡−1√1 − 𝛽𝑡, 𝛽𝑡),  (1) 

where ∀ 𝑡 = 1. . 𝑇̅̅ ̅̅ ̅̅  𝛽𝑡 ∈ (0; 1]  are the 

hyperparameters that regulate the diffusion rate. 

During the reverse diffusion process, the 

machine learning model step by step reconstructs 

the object's states from 𝑥𝑇 to 𝑥0, and this denoising 

restores an object from the original distribution: 

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)~𝒩(𝑥𝑡−1;  𝜇𝜃(𝑥𝑡, 𝑡), 𝜎𝜃(𝑥𝑡, 𝑡)), (2) 

where 𝜃 are the model’s trainable weights. 

Texts in typical representations do not have the 

property of continuity and are a sequence of tokens 

with discrete values that do not have an order 

relation and correspond to the categorical data type. 

Thus, we follow the path of adapting the diffusion 

processes to categorical data - such approaches are 

called discrete diffusion. 

2.2 Discrete Diffusion for Text Generation 

Diffusion models with discrete state spaces were 

first introduced by Sohl-Dickstein et al. (2015), 

who considered a diffusion process over binary 
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random variables. Hoogeboom et al. (2021) 

extended the model class to categorical random 

variables with transition matrices characterized by 

uniform transition probabilities. We follow Austin 

et al. (2021) to define a discrete diffusion model for 

texts.  

Namely, we consider each text token 𝑥𝑡 to be a 

discrete random variable with 𝐾  categories. For 

text data, 𝐾 =  |𝑉|  is the size of the vocabulary. 

(He et al., 2023). The forward transition 

probabilities can be represented by matrices: 

[𝑄𝑡]𝑖𝑗  =  𝑞(𝑥𝑡  =  𝑗|𝑥𝑡−1  =  𝑖). The process of  

adding noise can then be written as 

𝑞(𝑥𝑡|𝑥𝑡−1) =  𝐶𝑎𝑡(𝑥𝑡;  𝑝 =  𝑥𝑡−1𝑄𝑡) (3) 

where 𝐶𝑎𝑡(∙) is a category distribution (Austin et 

al., 2021). 

2.3 Masked Language Models and Discrete 

Diffusion 

He et al. (2023) noted the relationship between the 

 discrete diffusion process and the task of 

pretraining of masked language modeling (MLM) 

encoder models. Namely, they suggested 

incorporating an absorbing state, e.g., [MASK] for 

BERT, into the Markov process of diffusion. In 

particular, each token in the sequence either stays 

the same or transitions to [MASK] with some 

probability. Formally, each entry of the transition 

matrix at step 𝑡 is as follows, 

[𝑄𝑡]𝑖𝑗 = {

1 𝑖𝑓 𝑖 = 𝑗 = [M]

𝛽𝑡 𝑖𝑓 𝑗 = [M], 𝑖 ≠ [M]

1 − 𝛽𝑡 if i =  j ≠  [M]
 (4) 

where [M] is short for [MASK]. 

Such a Markov process converges to a stationary 

distribution 𝑞(𝑥𝑇)  that places all the probability 

mass on the sequence with all [MASK] tokens. 

The most common transformer (Vasvani et al., 

2017) models pre-trained for the MLM task are 

models from the BERT family (Devlin et al, 2019). 

He et al. (2023) suggested DiffusionBERT that 

uses a pretrained BERT model as an encoder due to 

the similarity of the tasks. The length of the output 

sequence of the DiffusionBERT model is fixed and 

is set to different values depending on the problem 

solved. 

2.4 Discrete Diffusion for Translation 

Reid et al. (2023) suggested a diffusion model 

using Levenstein operations for machine 

translation. They have tested the model on WMT14 

EN-DE dataset. It is unclear from the paper how do 

the authors determine the target length of the output 

sequence.  

Zheng et al. (2023) suggest a reparameterized 

discrete diffusion (RDM) approach to text 

generation, and report results for the machine 

translation task on the IWSLT14 DE-EN, WMT14 

EN-DE and WMT16 EN-RO datasets. To 

determine the translation length, the authors of 

RDM trained a separate model similar to the one of 

Ghazvininejad et al. (2020). They pose the problem 

of determining the length of the output sequence as 

a classification problem, selecting 𝑘  best options 

out of 𝑁  possible, where 𝑁  is the maximum text 

length that the model used can process. Similarly 

to Gao et al. (2024), several options are selected 

and the best one is chosen based on the metrics of 

the overall text quality. 

 

Figure 1: Overview of the system 



207
 

 
 

Ye et al. (2023) explore the possibilities of 

increasing applicability domain of discrete 

diffusion approaches, while considering an 

approach similar to DiffusionBERT, except that 

instead of the BERT encoder, the authors use the 

RoBERTa model (Liu et al., 2019). The quality of 

machine translation is assessed on the IWSLT14 

DE-EN and WMT14 EN-DE data sets, using the 

same quality metrics and the same idea for 

determining the length as in the RDM approach. 

3 System Overview 

3.1 General Translation Process 

The general translation process is presented on 

Figure 1. Our system consists of a discrete 

diffusion model and an output length prediction 

model. 

On each diffusion step, a concatenation of the 

source text and output is used as the input to the 

generative model, but the absorbing tokens are 

distributed only within the output part. We do not 

use any special separation tokens, but just use the 

prompt "{Source Language}: {Source Text} \n 

{Target Language}: {𝑥𝑡}". 

Since we use XLM-RoBERTa’s (Conneau et al, 

2020) positional embedding model as an encoder 

and are forced to fit the input sequence of the model 

into 512 tokens, we apply punctuation splitting of 

the source texts, limiting the maximum size of the 

source text to 200 tokens, and then glue the results 

back. We also do not use the extended context to 

improve translation; this is left for the future work. 

We take a fixed number of the diffusion steps 𝑇 

equal to 50. Tokens that were unmasked in the 

previous steps are likely to be replaced with 

subsequent ones, just like in DiffusionBERT (He et 

al., 2023). The standard argmax approach is used 

as a sampling method. We do not use temperature 

and do not limit the number of tokens to choose 

from. 

3.2 Generative Model 

We largely follow Ye et al. (2023) and use XLM-

RoBERTa (Conneau et al, 2020) family pre-trained 

model that includes a multilayer transformer 

encoder and a single-layer MLM head.  

We fine-tune both the encoder and the head for 

discrete diffusion text generation that differs from 

MLM mainly by the percentage of the masked 

tokens. We use the cross-entropy weighted relative 

to the diffusion step 𝑡 loss proposed by Zheng et al. 

(2023): 

𝐿𝑡 = −𝜆𝑡−1 ∑ 𝑦𝑖 log 𝑝𝑖

𝑁

𝑖

 (5) 

where 𝑦𝑖  is the true probability (0 or 1) of token 

with index 𝑖 in model dictionary, 𝑝𝑖 is the predicted 

probability, 𝑁 is the size of the dictionary, 𝜆𝑡−1 is 

the parameter that depends on the percentage of the 

masked tokens at the steps 𝑡 and 𝑡 − 1. 

Following Chang et al. (2022), we use the cosine 

noise schedule: 

𝛽𝑡 = cos(
𝜋𝑡

2𝑇
) (6) 

3.3 Length Predictor 

Our length predictor also consists of an encoder 

and a task-specific head. Although our length 

prediction model is based on the same XLM-

RoBERTa, physically these two models are 

completely separate. We tried not to fine-tune the 

encoder for the length problem and to use the 

standard XLM-RoBERTa, but we got worse 

metrics on the test data. 

We use a regression predictor of the output 

length, unlike other works that use classifiers with 

the number of categories equal to the length of the 

context, for example, 512 tokens. Our regression 

head is a two-layer perceptron with ELU-

activation. Standard MSE loss is used when the 

length predictor is trained. 

Generative Model 

Architecture XLM-RoBERTa-Large 

Optimizer AdamW(𝛽1 = 0.9, 𝛽2 = 0.98) 

Weights decay 0.01 

Learning Rate Schedule Cosine 

Max learning rate 5E-05 

Batch size 16 

Accumulation step 8 

Steps 30000 

Warmup ratio 0.01 

Loss (Section 3.2) 

Number format FP16 

Length Model 

Hidden size 1024 

Optimizer AdamW(𝛽1 = 0.9, 𝛽2 = 0.999) 

Learning Rate Schedule OneCycleLR (Smith et al, 2017), 

two phases 

Max learning rate 7E-07 

Batch size 8 / 16 

Steps 30000 

Embedding calculation Mean pooling 

Activation ELU 

Loss function MSE 

Number format FP16 

Table 1: Hyperparameters of the models 
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The main improvement in length prediction is 

because of the use of the input length. There is a 

fairly strong relationship between the length of the 

text in the source language and the length of its 

translation, which, in general, is almost linear. We 

suggest taking this into account when the target is 

defined. Our model predicts the ratio of the input 

and output lengths, normalized by the average ratio  

for the training set. We employ standard mean 

pooling to convert the matrix of token embeddings 

obtained from the encoder into a common 

embedding of text, which will be used as features 

for the length head. 

3.4 Training Data 

The WikiMatrix dataset (Schwenk et al., 2021) 

was used as a train dataset for EN-DE, EN-RU, 

EN-CS language pairs; Neulab-TedTalks 

(Tiedemann, 2012) was used for EN-ES. The 

training sets were trimmed to 480 thousand 

examples when training the generation model and 

to 240 thousand when training a length prediction 

model. 

3.5 Pruning the tokenizer 

Due to the computational limitations we reduce the 

token set of our models for each pair of languages 

to the minimum required (all the other tokens are 

replaced with [UNK]). The effect of reduction on 

the number of model parameters is demonstrated in 

Table 2. According to our observations, it increases 

the quality of models when tested on validation 

datasets for the selected language pair, but may 

degrade the quality of general translation when 

tested on complex examples. 

Pruning the tokenizer was made before 

trimming the training sets to keep as much tokens 

as possible. 

4 Results 

The official automatic scores of our system on the 

test data are presented in the Table 3. The gap 

between our results and the leading system is 

significant.  

4.1 Model size 

We used XLM-Roberta-Large with 561 million 

parameters as the main model for generating 

translation, while other systems participating in the 

competition this and last years had tens of billions 

of parameters. This makes our model largely 

uncompetitive. Unfortunately, today there are no 

pretrained open-weight encoder models 

comparable to leading open-weight decoder 

models in terms of parameters number and pretrain 

token count. 

4.2 Quantity and quality of training data 

Due to technical limitations, we used only a small 

part of the translation datasets provided, no more 

than 480 thousand examples for each language 

pair. Increasing the training set and better cleaning 

should significantly improve the quality, especially 

when using a larger pretrained model. 
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