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Abstract

Neural metrics for machine translation (MT)
evaluation have become increasingly promi-
nent due to their superior correlation with hu-
man judgments compared to traditional lexi-
cal metrics. Researchers have therefore uti-
lized neural metrics through quality-informed
decoding strategies, achieving better results
than likelihood-based methods. With the rise of
Large Language Models (LLMs), preference-
based alignment techniques have gained at-
tention for their potential to enhance transla-
tion quality by optimizing model weights di-
rectly on preferences induced by quality es-
timators. This study focuses on Contrastive
Preference Optimization (CPO) and conducts
extensive experiments to evaluate the impact of
preference-based alignment on translation qual-
ity. Our findings indicate that while CPO con-
sistently outperforms Supervised Fine-Tuning
(SFT) on high-quality data with regard to the
alignment metric, it may lead to instability
across downstream evaluation metrics, partic-
ularly between neural and lexical ones. Addi-
tionally, we demonstrate that relying solely on
the base model for generating candidate trans-
lations achieves performance comparable to us-
ing multiple external systems, while ensuring
better consistency across downstream metrics.1

1 Introduction

Neural metrics for machine translation evaluation
that are trained to mimic human preferences, such
as BLEURT (Sellam et al., 2020), COMET (Rei
et al., 2020, 2022a), or Metric-X (Juraska et al.,
2023), have become increasingly prevalent. These
metrics offer greater accuracy and better reflect
human judgments compared to traditional lexical
metrics (Mathur et al., 2020; Kocmi et al., 2021;
Freitag et al., 2022b; Kocmi et al., 2024) like

1All relevant preference datasets and aligned mod-
els, along with detailed evaluation metrics, are available
at https://huggingface.co/collections/artefactory/
translation-alignment-analysis.

BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005) or chrF (Popović, 2015), which
mainly consider lexical overlap with a reference
text. As such, researchers have attempted to lever-
age these improvements by integrating them di-
rectly into translation systems.

One appealing strategy to incorporate quality
information to improve downstream translation
performance involves using decoding strategies
such as N-Best reranking and Minimum Bayes
Risk (MBR) decoding (Kumar and Byrne, 2002,
2004; Eikema and Aziz, 2020; Fernandes et al.,
2022; Freitag et al., 2022a). These techniques rely
on generating multiple candidates to maximize a
given quality metric at inference time, and research
has shown that they consistently yield better re-
sults than likelihood-based decoding techniques
(Eikema and Aziz, 2020; Koehn and Knowles,
2017; Ott et al., 2018).

With the rise of decoder-only LLMs in MT,
quality-informed fine-tuning techniques have
gained significant attention. Unlike decoding-
based methods that inject quality information at
inference time, fine-tuning modifies model weights
using training sets induced with quality informa-
tion. These approaches include filtering parallel
training data based on a quality metric (Alves et al.,
2024), distilling gains from more expensive quality-
aware methods such as MBR (Finkelstein et al.,
2024), or employing preference-based alignment
techniques (Rafailov et al., 2024; Xu et al., 2024a),
where the model learns preferences induced by
quality metrics between candidate translations typ-
ically generated by multiple systems. In this work,
we focus specifically on the latter.

Alignment techniques represent a paradigm shift
from quality-aware inference time approaches, as
they optimize the metric of interest indirectly.
Understanding the impact of these approaches
on translation quality is thus a relevant prob-
lem. While some studies have examined quality-
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informed decoding techniques and their influ-
ence on translation output (Amrhein and Sennrich,
2022), there is still a gap in our understanding of
how preference-based fine-tuning affects transla-
tion quality.

In this work, we aim to bridge this gap by exam-
ining the properties of preference-based alignment
techniques, with a particular focus on Contrastive
Preference Optimization (CPO) (Xu et al., 2024a),
which has been used successfully to achieve very
competitive translation performance. Our analysis
seeks to describe the effects of preference-based
fine-tuning on downstream performance, specifi-
cally regarding alignment effectiveness, the inter-
actions between optimized and non-optimized met-
rics, and the impact of using multiple candidate
translation systems for generating preference data.
Through extensive experimentation, we find that:

• Preference-based alignment globally outper-
forms Supervised Fine-Tuning (SFT) on high-
quality data in terms of maximizing the align-
ment metric.

• However, preference-based alignment is
highly sensitive to the choice of candidate
systems used for generating preference data,
affecting both the alignment metric and down-
stream metric consistency.

• Aligning a model using its own translations
achieves performance comparable to employ-
ing multiple external systems, while ensuring
better metric consistency and allowing for im-
proved control over the alignment process.

2 Background

2.1 Quality-Informed Translation
Along with human evaluation, lexical metrics like
BLEU (Papineni et al., 2002), chrF (Popović,
2015), METEOR (Banerjee and Lavie, 2005), and
ROUGE (Lin, 2004) have long been used for trans-
lation evaluation. However, human evaluation is
costly, and lexical metrics have been shown to cor-
relate poorly with human judgements.

More recently, some neural metrics have
emerged as a preferred method to mimic human
preferences without relying on expensive human
evaluation. The intuitive approach involves train-
ing an encoder model on human-annotated source-
translation-reference triplets. Among the metrics
most frequently mentioned in the literature are

BLEURT (Yan et al., 2023), COMET (Rei et al.,
2020), CometKiwi (Rei et al., 2022b), xCOMET
(Guerreiro et al., 2023), and Metric-X (Juraska
et al., 2023). They can be divided into two fami-
lies: reference-based metrics, that include a human-
written gold reference as an input to the scoring
model, and reference-free metrics, which only re-
quire access to the source sentence and the gener-
ated translation. These neural metrics have proven
particularly effective at scoring translations and
achieve much higher correlation with human judg-
ments than their lexical counterparts (Mathur et al.,
2020; Kocmi et al., 2021; Freitag et al., 2022b;
Kocmi et al., 2024).

These neural metrics have also been leveraged
to improve translation models through decoding
strategies. The approach involves sampling various
candidate translations, scoring them according to a
given metric, and selecting the one with the highest
score. This methodology is exemplified by MBR
decoding in the reference-based setting and N-best
reranking in the reference-free setting (Fernandes
et al., 2022; Freitag et al., 2022a).

2.2 Quality-Based Fine-Tuning

With the recent rise of decoder-only LLMs applied
to translation tasks (Zhu et al., 2023; Jiao et al.,
2023; Hendy et al., 2023; Kocmi et al., 2023; Fre-
itag et al., 2023; Xu et al., 2023; Alves et al., 2023;
Xu et al., 2024a; Alves et al., 2024), and with auto-
matic metrics increasingly reflecting human judg-
ments (Sellam et al., 2020; Rei et al., 2020; Juraska
et al., 2023), quality-based fine-tuning has gained
considerable traction. This approach shifts the ob-
jective from selecting the best candidate translation
according to a metric at inference time to directly
updating model weights through fine-tuning to pro-
duce the desired translations. A straightforward
approach is to perform SFT on high-quality trans-
lations, evaluated and then filtered with respect to
a metric of interest (Alves et al., 2024).

Another attractive alternative is Preference Op-
timization (PO) (Simianer, 2018; Rafailov et al.,
2024; Xu et al., 2024a; Yang et al., 2023; Xu et al.,
2024b; Wu et al., 2024), which focuses on learning
preferences between chosen and rejected transla-
tions rather than simply increasing the likelihood
of high-quality sentences. A popular PO method
is Direct Preference Optimization (DPO) (Rafailov
et al., 2024), which aims to maximize a scaled like-
lihood gap between a chosen and a rejected option.
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More recently, CPO (Xu et al., 2024a) has emerged
as a promising alternative, incorporating an SFT
term into the DPO loss, effectively combining the
strengths of both methods. Moreover, by removing
the reference policy from the learning objective, it
improves training efficiency.

3 Experimental Setup

Here, we detail our experimental setup, explaining
how we built the preference data, and train and
evaluate the models.

3.1 Preference Data
Preference datasets. To build a preference
dataset, one needs candidate translations, an eval-
uation metric m to score these translations, and a
method to select chosen and rejected hypotheses.
We denote a candidate dataset by

D = {(xi,Yi)}Ni=1,

where xi denotes the source sentence and Yi is a
set of candidate translations. One can then derive a
preference dataset,

Dpref = {(xi, yri , yci )}
N
i=1,

where yci ∈ Yi (chosen hypothesis) is a translation
preferred to yri ∈ Yi (rejected hypothesis) accord-
ing to a metric m and a given selection method.

Multi-system approach. In the multi-system sce-
nario, we follow the setting outlined by Xu et al.
(2024a). Candidate translations are generated us-
ing three different systems, namely ALMA-13B-
LoRA (the base model we aim to align, referred to
as Base) (Xu et al., 2023), GPT-4 (OpenAI, 2023),
and the human-written gold reference (referred to
as Ref). Formally, for all data samples,

Ymulti
i =

{
yRef
i , yBase

i , yGPT -4
i

}
.

Then, for each sample, the three translations are
evaluated with regard to m. The one with highest
(resp. lowest) score is selected as the chosen (resp.
rejected) hypothesis. Formally,

yci = argmax
y∈Ymulti

i

m (y) ∧ yri = argmin
y∈Ymulti

i

m (y)

Mono-system approach. In the mono-system
setting, we solely rely on the base model for candi-
date generation. For each source sentence, K = 50
candidates are top-p-sampled (p = 0.6) with a tem-
perature τ = 0.9,2 and are then ranked based on

2These are the default parameters used in the ALMA pa-
per (Xu et al., 2023, 2024a).

evaluation metric m. For all samples, this results
in a set of candidates

Ymono
i =

{
y1i , · · · , yKi

}
,

where y1i ⪯ · · · ⪯ yKi are sorted in increasing
quality order, with no loss of generality. Preference
pairs are then derived to ensure that yri ⪯ yBase

i ⪯
yci holds for all samples. Further details on the
construction of mono-system preference datasets
are given in Section 5 and Appendix B.1.

Source dataset. We rely on the FLORES-200-
based (Team et al., 2022) dataset used in Xu et al.
(2024a) as a primary data source. It includes over
20000 translation pairs spanning six languages (En-
glish (en), Czech (cs), German (de), Icelandic (is),
Russian (ru), and Chinese (zh)) and covering ten
language directions, either into-English (xx-en) or
out-of-English (en-xx).

Alignment metrics. In line with Xu et al.
(2024a), we rely on reference-free neural metrics,
namely xCOMET-QE-XXL (Guerreiro et al., 2023)
(referred to as xCOMET-QE), and the WMT’23
version of CometKiwi-XXL (Rei et al., 2023) (de-
noted by CometKiwi), as well as on a reference-
based lexical metric, chrF (Popović, 2015).

3.2 Training
Learning objective. We focus our diagnosis on
CPO (Xu et al., 2024a), which combines a pref-
erence term with a likelihood term and achieves
state-of-the-art performance in preference-based
metric alignment for translation tasks. The empiri-
cal loss function is formally expressed as:

LCPO =− 1

N

N∑
i=1

[
log σ

(
β log

πθ (y
c
i |xi)

πθ (y
r
i |xi)

)]
+ LSFT ,

where LSFT = − 1
N

∑N
i=1 [log πθ (y

c
i |xi)] is the

negative-log-likelihood loss applied to chosen
translations, πθ is the model to fine-tune, σ is the
sigmoid function and β is a hyperparameter. In
our experiments, CPO alignment is consistently
compared to vanilla SFT on chosen translations.3

Training parameters. We replicate the exact
same parameters as the ones outlined by Xu et al.
(2024a). ALMA-13B-LoRA is LoRA fine-tuned

3All our models are trained using the code implementation
provided by Xu et al. (2024a).



1376

xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •87.80 •80.86 •58.53 •91.91 •81.17 •49.49

Preferences induced with xCOMET-QE
SFT • 89.13 • 81.49 • 59.82 • 92.38 • 81.67 • 50.28
CPO • 89.95 • 81.89 • 59.83 • 92.75 • 83.60 • 47.69

Preferences induced with CometKiwi
SFT • 89.26 • 81.70 • 60.01 • 92.44 • 81.93 • 50.49
CPO • 89.82 • 82.04 • 60.22 • 92.19 • 83.64 • 48.11

Preferences induced with chrF
SFT • 87.61 • 80.82 • 56.97 • 92.20 • 81.70 • 50.30
CPO • 78.51 • 75.62 • 45.32 • 88.89 • 80.99 • 42.50

Table 1: Comparison between SFT on preferred translations and CPO in the multi-system setting, using xCOMET-
QE, CometKiwi and chrF as alignment metrics. The same 3 metrics are reported for evaluation, separately for
into-English (xx-en) and out-of-English (en-xx) translations on the WMT’22 dataset. Green shades indicate metric
improvements over the base model, while red shades indicate metric decreases. We represent with (•) scenarios
where the preference metric matches the evaluation metric. Values in italic font denote statistically significant
differences between SFT- and CPO-based alignment at the 5% level, based on one-tailed paired Student’s t-tests.

with rank 16 for one epoch, starting with a learning
rate of 10−4, using inverse square root decay and
a batch size of 128. The β parameter of the CPO
objective function is set equal to 0.1, in line with
the original DPO paper by Rafailov et al. (2024).

3.3 Evaluation

Inference setup. Following other works on LLM-
based translation (Alves et al., 2024; Briakou et al.,
2024), all generations at inference time are pro-
duced using greedy decoding, as it provides max-
imum computational efficiency while preserving
high output quality.4

Evaluation datasets. We evaluate our ap-
proaches on the WMT’22 test dataset, which con-
sists of 17471 source-reference pairs and includes
the same ten language pairs as the preference data.
Evaluations on WMT’23 test data are provided in
Appendix A.

Evaluation metrics. We use the same three
metrics used to create the preference datasets:
xCOMET-QE, CometKiwi, and chrF. Additional
evaluation metrics are reported in Appendix A,
specifically the reference-based version of Metric-
X-Large (referred to as Metric-X) (Juraska et al.,
2023), and BLEU (Papineni et al., 2002).

4Inference is performed using the vLLM library (Kwon
et al., 2023).

4 Multi-System Preference Fine-Tuning

We begin our analysis by focusing on the multi-
system setting (Xu et al., 2024a), in which the cho-
sen and rejected options are derived from a pool of
three candidate systems consisting of ALMA-13B-
LoRA (base model), GPT-4, and the gold reference.

4.1 Top-Level Analysis
Neural-based alignment improves downstream
performance. Table 1 shows that when aligning
with neural metrics (xCOMET-QE or CometKiwi),
both SFT on preferred translations and CPO con-
sistently improve performance on the alignment
metric across language pairs. We also observe
that aligning on xCOMET-QE improves results on
CometKiwi, and vice-versa. We hypothesize this
may be the result of high correlation between dif-
ferent neural metrics, as they are typically trained
on similar data. Overall, these results demonstrate
that alignment-based techniques can achieve sim-
ilar objectives to those of quality-aware decoding
approaches like MBR, even though the target met-
ric is only indirectly optimized.

CPO induces adverse metric effects. In Table 1,
we observe that when aligning with neural metrics,
CPO yields significantly greater improvements on
the alignment metric compared to SFT. The in-
clusion of the reject option seems to offer addi-
tional benefits over the traditional SFT objective
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xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •87.80 •80.86 •58.53 •91.91 •81.17 •49.49

Optimization via SFT
Preferences induced with xCOMET-QE
All systems • 89.13 • 81.49 • 59.82 • 92.38 • 81.67 • 50.28
No Base • 89.41 • 81.56 • 60.26 • 92.32 • 81.65 • 50.52
No Ref • 89.32 • 81.58 • 60.08 • 92.22 • 81.33 • 50.05
No GPT-4 • 88.44 • 81.15 • 58.86 • 92.33 • 81.74 • 50.06

Preferences induced with chrF
All systems • 87.61 • 80.82 • 56.97 • 92.20 • 81.70 • 50.30
No Ref • 89.21 • 81.49 • 60.17 • 91.99 • 80.96 • 50.57

Optimization via CPO
Preferences induced with xCOMET-QE
All systems • 89.95 • 81.89 • 59.83 • 92.75 • 83.60 • 47.69
No Base • 89.59 • 81.73 • 59.94 • 92.74 • 83.13 • 48.54
No Ref • 89.91 • 81.86 • 60.59 • 92.44 • 81.97 • 50.67
No GPT-4 • 88.81 • 81.35 • 57.91 • 92.22 • 83.16 • 46.82

Preferences induced with chrF
All systems • 78.51 • 75.62 • 45.32 • 88.89 • 80.99 • 42.50
No Ref • 89.26 • 81.52 • 60.63 • 90.83 • 79.37 • 51.11

Table 2: Impact of the systems used for candidate generation on WMT’22 performance in the multi-system setting
after undergoing SFT and CPO optimization. Values in italic font denote statistically significant differences between
all-systems-based alignment and alignment with one system removed, at the 5% significance level, based on
one-tailed paired Student’s t-tests. Evaluation metrics and color codes are the same as in Table 1.

in this context. However, aligning with CPO also
introduces adverse effects between neural and lex-
ical metrics for out-of-English translations. More
specifically, and consistent with the findings of Xu
et al. (2024a), aligning on neural metrics negatively
impacts lexical metrics. Importantly, this is further
evidence to support recommendations provided in
(Kocmi et al., 2024): even though, in most cases,
neural and lexical MT evaluation metrics should
be positively correlated, we should employ caution
when using the same metric for evaluation that was
used during training/inference. Nevertheless and
perhaps more interestingly, it turns out SFT does
not produce such effects, raising the question of
whether these contradictory evaluation dynamics
seen with CPO stem from the learning objective
itself or the mix of candidate systems used.

Lexical alignment fails to improve downstream
performance. Table 1 shows that preference-
based lexical alignment5 behaves differently com-

5When performing alignment using a lexical metric like
chrF, the chosen translation is by definition the gold reference
as long as it is present in the pool of candidates. The transla-
tion with the lowest chrF score among the remaining systems

pared to neural alignment. Specifically, SFT results
are roughly stagnant, showing a slight decrease
in chrF for into-English translations and a slight
increase for out-of-English translations. In con-
trast, CPO results in a steep drop across the met-
ric board for both into- and out-of-English trans-
lations. Using the gold reference as the chosen
system appears to impair downstream performance,
especially when performing alignment using CPO.

4.2 Impact of the Candidate Systems
We now turn to investigating how much the suc-
cess of alignment-based fine-tuning depends on
the choice of the candidate systems. Unless other-
wise specified, we use xCOMET-QE as the align-
ment metric and examine the performance impact
of withdrawing systems from the candidate pool.
We perform SFT and CPO on the newly created
datasets. We report results in Table 2.

The choice of the candidate systems impacts
alignment performance. Table 2 shows that for
both SFT- and CPO-based methods, removing sys-
tems from the pool of candidates significantly af-

is then rejected.
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xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •87.80 •80.86 •58.53 •91.91 •81.17 •49.49

Chosen system set to Base
SFT • 88.17 • 81.08 • 58.91 • 91.94 • 81.21 • 49.35
CPO • 87.94 • 81.02 • 58.62 • 91.75 • 81.06 • 48.56

Chosen system set to Ref
SFT • 88.04 • 81.06 • 57.73 • 92.35 • 81.94 • 50.12
CPO • 81.95 • 77.86 • 48.75 • 86.97 • 80.01 • 39.81

Chosen system set to GPT-4
SFT • 89.81 • 81.67 • 60.53 • 91.96 • 80.83 • 50.73
CPO • 89.69 • 80.99 • 60.42 • 90.50 • 78.81 • 50.22

Table 3: Impact of imposing the chosen system on WMT’22 downstream performance in the multi-system setting.
Values in italic font denote statistically significant differences between SFT- and CPO-based alignment at the 5%
significance level, based on one-tailed paired Student’s t-tests. Evaluation metrics and color codes are the same as
in Table 1.

fects performance on the alignment metric. This is
particularly the case for out-of-English translation
with CPO optimization. Notably, removing GPT-4
has the strongest negative impact on downstream
xCOMET-QE. This is expected as it is the highest-
quality system among the system candidates (see
Table 11 in Appendix B).

Some candidate systems can be harmful to
preference-based alignment. In Section 4.1, we
observed CPO negatively impacts en-xx chrF
when aligning on neural metrics, unlike SFT on pre-
ferred translations. Table 2 suggests this may stem
from including gold references in the candidate sys-
tem pool: removing them eliminates this adverse
effect. We also noted in Section 4.1 that lexical
alignment fails to improve downstream chrF, with
sharp decreases with CPO. This issue is resolved
by removing gold references. Overall, candidate
system choice affects alignment effectiveness and
downstream metric consistency, with CPO showing
higher sensitivity to preference settings than SFT.

4.3 Impact of the Chosen System

To complement findings from Section 4.2 and fur-
ther characterize the sensitivity of preference-based
alignment, we propose examining downstream per-
formance when the chosen system is fixed to a
single system. We create three preference datasets
based on xCOMET-QE, in which we either impose
the base model, reference or GPT-4 as the chosen
system. When applicable, the rejected translation

is selected from the remaining systems (if one has
a lower xCOMET-QE than the chosen system); oth-
erwise, the sample is discarded.

CPO is not robust to the preference setting. In
contrast to the observations made in Section 4.1,
Table 3 shows that, under this setup, CPO fails to
outperform SFT for both xx-en and en-xx trans-
lations. When systematically choosing base trans-
lations, CPO is unable to surpass the trivial SFT
setting where the base model is fine-tuned on its
own translations.6 Moreove, downstream CPO per-
formance significantly declines when gold refer-
ences are chosen, underperforming the non-aligned
model across all metrics, even including the align-
ment metric. These results reinforce the claims
made in Section 4.2 and indicate a lack of robust-
ness of CPO compared to SFT. In the following
section (Section 5), we demonstrate that this insta-
bility observed with CPO can be mitigated by using
a more normalized preference setting, relying only
on the base model for candidate generation.

5 Mono-System Preference Fine-Tuning

So far, we have exclusively focused on multi-
system alignment, which involves using external
models for candidate generation and preference
dataset building. Although this approach is com-
mon for metric alignment (Luong and Manning,

6As expected, performing SFT on a model’s own greedy
predictions has minimal impact on downstream performance.
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xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •87.80 •80.86 •58.53 •91.91 •81.17 •49.49

Optimization via SFT
Multi-system • 89.13 • 81.49 • 59.82 • 92.38 • 81.67 • 50.28
Mono-system • 88.51 • 81.29 • 59.05 • 92.17 • 81.54 • 49.41

Optimization via CPO
Multi-system • 89.95 • 81.89 • 59.83 • 92.75 • 83.60 • 47.69
Mono-system • 89.35 • 81.80 • 59.52 • 92.69 • 82.91 • 49.02
Mono-system (opt.) • 89.58 • 81.97 • 59.65 • 92.87 • 83.47 • 49.11

Table 4: Comparison between multi- and mono-system fine-tuning on WMT’22 test data. Alignment is performed
on xCOMET-QE for both SFT and CPO. Mono-system (opt.) denotes the model fine-tuned on optimized mono-
system preference data. Values in italic font denote statistically significant differences between multi-system- and
mono-system-based alignment at the 5% significance level. Evaluation metrics and color codes are the same as in
Table 1, based on one-tailed paired Student’s t-tests.

2015; Sennrich et al., 2016; Xu et al., 2024a), some
works have shown that a model can be aligned ef-
fectively using only its own outputs (Yang et al.,
2023; Yuan et al., 2024; Dubey et al., 2024). In
this section, we propose to take a closer look at
this strategy and identify its potential advantages
and disadvantages compared to the multi-system
approach. We use xCOMET-QE as the alignment
metric. To ensure a fair comparison, we first gen-
erate the mono-system dataset to approximately
replicate the properties of the multi-system dataset
regarding the alignment metric.7 Details on the
construction of mono-system preference datasets
are given in Section 3 and Appendix B.1.

5.1 Comparison With Multi-System
Alignment

Mono-system alignment improves downstream
performance. Table 4 shows that performing
SFT and CPO on a mono-system dataset using
xCOMET-QE for alignment results in improved
downstream performance across all neural metrics
compared to the base model, as observed in the
multi-system scenario (Section 4.1). This find-
ing highlights the effectiveness of alignment tech-
niques even when using only the model’s own trans-
lations for candidate generation, without needing
access to high-quality external systems. This is
particularly relevant in practical scenarios in which
such access may be limited or unavailable.

7The created mono-system dataset has an average rejected/-
chosen xCOMET-QE of 87.8/97.3, compared to 87.9/97.2
for the multi-system dataset (Table 11).

CPO consistently outperforms SFT on neural
metrics. Similar to when relying on multiple sys-
tems for candidate generation, we observe in Ta-
ble 4 that CPO outperforms SFT regarding down-
stream performance on neural metrics. This find-
ing reinforces the observation made in Section 4.1
and tends to confirm the superiority of the CPO
objective over SFT on preferred translations in op-
timizing neural-based alignment performance.

Mono-system alignment slightly underperforms
multi-system alignment. Table 4 shows that
while mono-system alignment increases down-
stream performance on neural metrics, the improve-
ment levels are not as high as in the multi-system
setting. Despite the mono- and multi-system pref-
erence datasets being built with the same align-
ment metric properties, having translations from
different distributions, particularly from GPT-4 (cf.
Section 4.2 and Table 2), appears to add value for
achieving optimized alignment effectiveness.

Removing external systems almost eliminates
the adverse metric effects observed with CPO.
In Section 4.1, we showed that multi-system neural
alignment using CPO greatly impacts lexical per-
formance for out-of-English translations. Table 4
demonstrates that mono-system alignment almost
completely mitigates these negative effects. While
there is still a slight decrease in en-xx chrF, it is
much smaller compared to the multi-system sce-
nario. This confirms the findings from Sections 4.2
and 4.3 that CPO is sensitive to the preference set-
ting, but also shows that relying solely on candidate
translations from the base model limits adverse ef-
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Figure 1: Impact of chosen and rejected option quality on downstream performance, using xCOMET-QE for
alignment and evaluation. The chart is derived by linearly interpolating results from nine preference datasets (points
A to I), each with different average rejected and chosen qualities. Test performance on WMT’22 (average across all
language pairs) is reported in brackets. Example: point C (avg. rejected xCOMET-QE: 75.4, avg. chosen: 98.2)
achieves 90.9 xCOMET-QE on WMT’22 test data.

fects on downstream metric consistency. A possible
explanation is that candidate translations from the
same system distribution tend to have similar prop-
erties, thereby reducing the likelihood of observing
high lexical instability when performing alignment
based on a neural metric like xCOMET-QE.

The mono-system approach offers better control
over the alignment process. Specifically, mono-
system alignment provides more fine-grained con-
trol over the respective qualities of the chosen and
rejected options. This setting allows for tuning
these qualities to maximize post-alignment perfor-
mance, which is not possible when using a limited
number of external systems. This aspect is further
explored in the following section (Section 5.2).

5.2 Optimizing the Preference Data

In this final experiment, we examine how the qual-
ity of chosen and rejected options affects down-
stream performance. We build nine preference
datasets, each with varying average xCOMET-QE
scores for chosen and rejected options. The hy-
potheses’ average qualities are categorized into
three groups: High, Mid, and Low. As detailed
in Section 3.1, the quality of the chosen (resp. re-
jected) option is always ensured to be above (resp.
below) the quality of the base translation. The
statistics of the created datasets are summarized in

Appendix B.1 (Table 11).

The respective qualities of the rejected and cho-
sen options have a significant impact on post-
CPO performance. Figure 1 highlights the need
to closely monitor the qualities of chosen and re-
jected options to fully leverage the mono-system
approach. Specifically, several properties of pref-
erence data were found to negatively impact post-
CPO performance: (i) a chosen option of too low
quality, (ii) an extremely low or high quality of the
rejected option, and (iii) too wide a gap between
the qualities of the rejected and chosen options.

Optimizing preference data yields competitive
performance to multi-system setting. Figure 1
shows that for effective metric alignment with CPO,
the rejected option’s quality should be moderate
(neither too high nor too low), while the chosen op-
tion’s quality should be as high as possible. Specif-
ically, optimal test performance was obtained with
rejected options average around 90% (∆ = −10%)
of the base model’s quality, and chosen options av-
eraging around 105% (∆ = +5%). Under this sce-
nario, we show that performance levels can match
those in the multi-system setting while maintaining
consistency with lexical scores (Table 4). How-
ever, these results also highlight the complexity of
achieving optimal preference-based alignment and
get the most of the reject option.
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6 Conclusion

Our experiments revealed several key findings.
Firstly, we showed that preference-based align-
ment, specifically using CPO, globally outperforms
SFT on high-quality data in terms of improving
neural evaluation metrics. However, we identified
significant drawbacks when relying on multiple
systems for preference data generation, revealing
adverse effects between neural and lexical metrics,
and highlighting a lack of robustness in preference-
based alignment compared to the SFT approach. Fi-
nally, we showed that using candidate translations
all originating from the same system distribution,
specifically the base model, can be an effective
strategy for gaining more control over preference-
based fine-tuning. This approach achieves per-
formance comparable to using multiple external
systems while ensuring better consistency across
evaluation metrics. In a nutshell, while preference-
based alignment techniques hold promise for im-
proving MT quality, careful consideration must be
given to the choice of candidate translations, the
learning objective, and the potential trade-offs re-
garding downstream metric consistency.

Limitations

In this work, we conducted extensive experiments
to assess the impact of preference-based fine-tuning
on downstream translation quality. For efficiency
and practicality, we focused on the experimental
setup detailed by Xu et al. (2024a), which uti-
lizes three systems for candidate generation. Sim-
ilarly, we used the same evaluation metrics and
datasets. Future experiments could benefit from
validating our findings using different model fami-
lies, a broader range of alignment and evaluation
metrics, and additional translation datasets, for in-
stance including other languages.

Additionally, in the mono-system setting, we ex-
plored the impact of varying the qualities of chosen
and rejected options and derived general insights
on optimizing preference data. Further research
could involve using different datasets, models, and
alignment metrics to characterize more precisely
the factors that influence downstream performance
in this specific scenario. This approach could lead
to a deeper mathematical understanding of the ele-
ments that affect performance in preference-based
fine-tuning, resulting in more robust and scalable
optimization techniques.

Finally, our evaluation relied on automatic met-

rics, both lexical and neural, with the latter closely
approximating human judgments but still being un-
able to fully replace them. Given their imperfect
correlation with human preferences, future work
could benefit from additional human evaluation of
outputs obtained via the approaches we studied to
get an even deeper understanding of post-alignment
downstream performance dynamics.

Ethics Statement

Our work aims to investigate the mechanisms of
model alignment to enhance transparency in the
field of automatic translation. We believe this ef-
fort improves the interpretability of model outputs,
which is beneficial for ethical considerations. Ad-
ditionally, our analysis is distinctly multilingual,
with an emphasis on low-resource languages, con-
tributing to expanding the scope of MT. We have
identified no potential negative societal impacts
from our work.
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A Additional Results

In this section, we present results on WMT’23 test data. The findings in Tables 5, 6, 7 and 8 support the
observations discussed in the main text for the WMT’22 dataset. In Tables 9 and 10, we also provide
additional insights, split by language pairs, and include extra metrics, specifically Metric-X and BLEU.

xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •88.00 •77.74 •52.30 •86.19 •73.08 •47.31

Preferences induced with xCOMET-QE
SFT • 88.96 • 78.46 • 53.30 • 87.07 • 73.99 • 48.38
CPO • 89.77 • 78.95 • 53.47 • 88.09 • 76.75 • 44.29

Preferences induced with CometKiwi
SFT • 89.03 • 78.57 • 53.53 • 87.11 • 74.21 • 48.45
CPO • 89.58 • 79.16 • 53.97 • 87.25 • 76.71 • 44.48

Preferences induced with chrF
SFT • 87.91 • 77.62 • 51.20 • 86.95 • 73.96 • 48.14
CPO • 81.79 • 72.38 • 41.46 • 83.21 • 74.76 • 37.96

Table 5: Comparison between SFT on preferred translations and CPO in the multi-system setting on WMT’23 test
data. Notations and formatting are the same as in Table 1.

xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •88.00 •77.74 •52.30 •86.19 •73.08 •47.31

Optimization via SFT
Preferences induced with xCOMET-QE
All systems • 88.96 • 78.46 • 53.30 • 87.07 • 73.99 • 48.38
No Base • 89.07 • 78.53 • 53.57 • 86.94 • 73.70 • 48.52
No-Ref • 89.05 • 78.47 • 53.39 • 87.04 • 73.60 • 48.65
No GPT-4 • 88.29 • 78.02 • 52.62 • 87.04 • 74.08 • 48.03

Preferences induced with chrF
All systems • 87.91 • 77.62 • 51.20 • 86.95 • 73.96 • 48.14
No Ref • 88.89 • 78.47 • 53.51 • 86.65 • 73.02 • 49.04

Optimization via CPO
Preferences induced with xCOMET-QE
All systems • 89.77 • 78.95 • 53.47 • 88.09 • 76.75 • 44.29
No Base • 89.52 • 78.54 • 53.44 • 87.66 • 75.84 • 45.27
No Ref • 89.57 • 79.26 • 54.18 • 87.41 • 74.46 • 48.88
No GPT-4 • 89.16 • 78.46 • 51.94 • 87.45 • 76.62 • 43.30

Preferences induced with chrF
All systems • 81.79 • 72.38 • 41.46 • 83.21 • 74.76 • 37.96
No Ref • 88.79 • 78.73 • 54.21 • 85.40 • 71.82 • 49.59

Table 6: Impact of candidate systems on WMT’23 downstream performance in the multi-system setting. Notations
and formatting are the same as in Table 2.
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xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •88.00 •77.74 •52.30 •86.19 •73.08 •47.31

Chosen system set to Base
SFT • 88.07 • 77.93 • 52.52 • 86.52 • 73.27 • 47.52
CPO • 88.05 • 77.95 • 52.24 • 86.68 • 73.75 • 46.54

Chosen system set to Ref
SFT • 88.33 • 77.92 • 51.75 • 87.29 • 74.57 • 47.86
CPO • 84.06 • 74.22 • 44.53 • 81.01 • 73.55 • 34.64

Chosen system set to GPT-4
SFT • 89.57 • 79.06 • 54.08 • 86.70 • 73.18 • 49.23
CPO • 88.99 • 78.64 • 53.95 • 85.14 • 71.40 • 48.68

Table 7: Impact of the chosen system on WMT’23 downstream performance in the multi-system setting. Notations
and formatting are the same as in Table 3.

xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •88.00 •77.74 •52.30 •86.19 •73.08 •47.31

Optimization via SFT
Multi-system • 88.96 • 78.46 • 53.30 • 87.07 • 73.99 • 48.38
Mono-system • 88.55 • 78.17 • 52.74 • 86.75 • 73.87 • 47.43

Optimization via CPO
Multi-system • 89.77 • 78.95 • 53.47 • 88.09 • 76.75 • 44.29
Mono-system • 89.33 • 78.78 • 53.17 • 87.94 • 76.01 • 46.65
Mono-system (opt.) • 89.36 • 78.92 • 53.28 • 88.50 • 76.87 • 46.48

Table 8: Comparison between multi- and mono-system fine-tuning on WMT’23 test data. Notations and formatting
are the same as in Table 4.
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cs-en en-cs de-en en-de
Neural Lexical Neural Lexical Neural Lexical Neural Lexical

xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 83.42 82.57 2.00 65.81 41.25 90.80 81.96 1.48 53.58 27.42 93.33 83.48 2.03 55.24 29.02 96.32 80.87 1.22 56.95 27.65
SFT
Multi-system
→ xCOMET-QE
Vanilla 86.18 83.17 1.98 67.36 42.81 91.49 82.69 1.42 55.02 28.58 93.88 83.85 2.00 56.32 29.86 96.57 81.21 1.19 57.62 28.22
No Base 86.58 83.01 1.99 67.79 42.99 91.61 82.63 1.42 55.51 28.84 93.88 83.88 2.00 56.62 30.08 96.63 81.66 1.19 57.83 28.15
No Ref 86.43 83.20 1.97 67.50 42.93 91.28 82.10 1.45 54.94 28.75 93.88 83.96 1.99 56.63 30.06 96.41 81.10 1.20 57.49 28.08
No GPT-4 85.23 83.03 2.02 66.55 42.21 91.53 82.78 1.42 54.52 28.07 93.41 83.59 2.02 55.41 29.10 96.49 81.22 1.20 57.38 28.14
Chosen = Base 84.64 82.87 2.03 66.39 41.99 90.77 81.69 1.50 53.52 27.67 93.55 83.61 2.03 55.82 29.48 96.43 81.14 1.22 56.97 27.80
Chosen = Ref 83.78 82.83 2.04 65.74 41.62 91.36 82.65 1.40 54.35 27.73 93.35 83.69 2.02 54.67 28.48 96.67 81.60 1.19 57.32 27.99
Chosen = GPT-4 86.97 82.69 2.00 67.62 41.99 91.14 81.33 1.48 56.27 28.97 94.22 83.95 1.98 57.02 30.10 96.29 80.92 1.21 58.05 28.00
→ CometKiwi
Vanilla 86.17 83.31 1.97 67.50 43.08 91.57 83.01 1.40 55.29 28.69 94.00 84.07 1.98 56.40 29.79 96.58 81.47 1.19 57.77 28.13
→ chrF
Vanilla 83.63 82.85 2.06 65.22 40.77 91.42 82.45 1.41 54.76 28.11 92.86 83.53 2.03 54.26 28.29 96.60 81.63 1.18 57.50 28.06
No Ref 86.15 82.91 1.99 67.67 43.23 91.29 81.85 1.48 55.83 29.24 93.91 83.85 2.00 56.58 30.04 96.32 80.74 1.22 57.97 28.21
Mono-system
→ xCOMET-QE
Vanilla 85.00 83.11 1.99 66.38 41.81 91.04 82.23 1.45 53.27 27.42 93.71 83.80 2.00 55.84 29.27 96.46 81.16 1.21 57.08 27.94
CPO
Multi-system
→ xCOMET-QE
Vanilla 87.40 83.58 1.94 67.52 42.54 90.86 84.58 1.40 50.58 23.44 94.22 84.10 1.94 56.21 29.44 97.34 83.38 1.12 55.95 26.20
No Ref 87.59 83.18 1.95 67.90 41.86 91.60 82.63 1.41 56.16 28.97 94.28 84.07 1.98 56.98 30.02 96.57 82.02 1.18 57.86 27.66
No Base 86.68 83.22 1.96 67.46 42.84 90.94 84.14 1.38 51.48 24.91 93.97 84.06 1.96 56.32 29.80 97.16 82.67 1.12 56.53 27.20
No GPT-4 84.95 83.22 1.99 65.99 41.31 90.45 83.91 1.39 49.32 22.04 93.65 83.88 1.96 54.95 28.36 97.31 83.27 1.12 55.30 25.17
Chosen = Base 84.10 82.69 2.05 65.94 41.77 90.42 81.80 1.51 52.29 26.71 93.41 83.48 2.04 55.53 29.34 96.37 80.82 1.23 56.17 27.10
Chosen = Ref 71.82 79.56 2.22 54.77 28.59 79.03 80.03 1.59 40.19 14.25 89.61 81.47 2.08 47.32 21.40 96.57 79.91 1.12 48.62 18.46
Chosen = GPT-4 87.70 81.77 2.07 66.72 39.42 89.73 78.83 1.57 56.21 27.28 94.17 83.06 2.03 57.19 29.47 95.68 79.61 1.27 57.68 26.23
→ CometKiwi
Vanilla 86.74 83.46 1.95 67.67 42.42 90.21 84.81 1.43 51.23 23.53 94.20 84.22 1.93 56.45 29.61 97.19 83.71 1.13 56.24 25.41
→ chrF
Vanilla 66.31 76.41 2.53 51.03 25.35 83.47 80.25 1.72 43.35 15.80 87.27 79.30 2.29 44.28 19.34 96.87 81.49 1.14 51.01 19.73
No Ref 86.65 82.99 1.98 68.33 43.19 89.83 79.38 1.59 57.08 28.51 93.94 83.67 2.02 56.68 29.76 95.84 80.01 1.27 58.68 27.66
Mono-system
→ xCOMET-QE
Vanilla 85.99 83.66 1.93 67.10 42.09 91.40 83.99 1.39 52.46 26.30 94.01 84.14 1.95 55.97 29.18 96.89 82.29 1.15 56.53 27.25
Optimized 86.51 83.84 1.90 67.08 41.73 91.47 84.28 1.37 52.40 25.92 94.26 84.32 1.94 56.15 29.26 97.13 82.78 1.12 56.72 27.09

is-en en-is ru-en en-ru
Neural Lexical Neural Lexical Neural Lexical Neural Lexical

xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 76.22 85.36 1.89 59.72 35.34 89.15 80.68 2.40 53.31 23.49 89.68 80.92 1.82 62.72 35.29 92.77 82.62 2.04 51.93 25.86
SFT
Multi-system
→ xCOMET-QE
Vanilla 79.24 85.88 1.82 62.05 37.49 89.18 80.63 2.38 53.14 22.90 90.59 81.35 1.77 64.18 36.97 93.18 83.18 1.96 53.02 26.79
No Base 80.12 86.09 1.84 62.77 38.11 88.65 80.19 2.45 53.23 22.95 90.85 81.40 1.77 64.60 37.20 93.02 83.10 1.97 53.26 26.91
No Ref 79.67 85.94 1.83 62.52 37.97 88.74 80.10 2.47 52.93 22.84 90.82 81.50 1.77 64.47 37.24 92.90 82.73 2.04 52.57 26.29
No GPT-4 77.64 85.63 1.87 60.33 35.79 89.43 81.05 2.34 53.38 23.27 90.04 81.15 1.80 63.20 36.19 93.13 83.05 1.95 52.82 26.65
Chosen = Base 76.85 85.60 1.87 59.94 35.60 88.67 80.35 2.42 52.58 22.53 89.87 80.99 1.82 63.08 36.01 92.87 82.64 2.05 52.13 26.22
Chosen = Ref 76.86 85.52 1.87 59.88 35.41 89.44 81.24 2.30 53.45 23.60 89.39 80.92 1.80 61.40 34.43 93.29 83.43 1.92 52.74 26.54
Chosen = GPT-4 81.03 86.01 1.84 63.09 37.61 88.26 79.01 2.56 53.17 22.44 91.11 81.45 1.77 64.91 37.39 92.47 82.44 2.07 53.53 26.96
→ CometKiwi
Vanilla 79.38 86.03 1.81 62.26 37.69 89.06 80.95 2.37 53.42 23.30 90.78 81.52 1.75 64.31 37.09 93.20 83.30 1.96 53.22 26.96
→ chrF
Vanilla 76.29 85.36 1.89 59.07 34.61 88.99 80.46 2.35 53.09 23.20 88.63 80.51 1.84 60.40 33.44 93.11 83.31 1.93 52.80 26.77
No Ref 79.56 85.96 1.83 62.19 37.70 88.34 79.65 2.54 53.22 22.88 90.79 81.40 1.77 64.56 37.30 92.67 82.50 2.06 53.29 26.90
Mono-system
→ xCOMET-QE
Vanilla 77.44 85.77 1.85 60.19 35.69 89.11 80.46 2.38 52.95 23.16 90.25 81.27 1.78 63.52 36.22 93.14 83.07 2.00 52.13 26.40
CPO
Multi-system
→ xCOMET-QE
Vanilla 80.73 86.12 1.81 63.01 38.10 89.28 82.70 2.08 51.70 21.29 91.14 81.57 1.72 63.88 35.78 94.52 85.51 1.71 50.60 23.97
No Ref 81.03 85.91 1.84 63.29 37.90 89.15 80.18 2.47 53.47 22.46 91.11 81.61 1.77 64.66 36.55 92.89 83.40 1.95 53.27 26.27
No Base 79.90 86.07 1.80 62.63 37.81 89.67 82.02 2.10 51.95 22.34 91.06 81.57 1.73 64.20 36.49 94.30 84.85 1.81 51.28 25.44
No GPT-4 77.75 85.63 1.84 60.46 35.73 88.70 82.37 2.08 51.02 20.54 90.04 81.07 1.78 61.58 33.91 94.44 85.41 1.70 49.69 23.09
Chosen = Base 75.89 85.47 1.93 59.27 35.04 88.83 80.38 2.37 52.21 22.51 89.76 81.01 1.81 62.86 35.46 92.57 82.11 2.13 51.33 25.64
Chosen = Ref 62.78 82.24 2.09 51.44 25.64 76.02 77.65 2.46 43.95 13.38 83.04 77.41 2.01 51.27 23.21 93.39 82.63 1.73 42.24 15.76
Chosen = GPT-4 81.02 85.15 1.92 62.85 36.17 86.51 76.73 2.88 52.54 20.88 90.95 80.91 1.83 64.68 36.06 91.13 80.75 2.21 53.43 25.58
→ CometKiwi
Vanilla 80.83 86.17 1.79 63.15 37.98 88.15 82.29 2.30 52.23 21.16 91.06 81.80 1.72 64.15 36.14 93.99 85.44 1.77 51.04 23.54
→ chrF
Vanilla 57.08 80.43 2.40 47.93 22.21 81.59 78.80 2.34 46.13 14.70 79.00 75.29 2.25 47.38 20.28 93.52 83.83 1.82 45.51 17.75
No Ref 80.13 85.77 1.85 62.87 37.63 86.51 77.57 2.87 53.35 22.12 90.89 81.43 1.79 64.57 36.80 91.54 81.04 2.18 53.86 26.18
Mono-system
→ xCOMET-QE
Vanilla 79.33 86.05 1.80 61.78 37.42 89.75 82.17 2.14 52.71 22.69 90.78 81.44 1.75 63.50 35.72 93.79 83.99 1.87 52.03 26.09
Optimized 79.16 86.02 1.78 62.25 37.42 89.81 82.81 2.11 52.79 22.60 90.96 81.60 1.72 63.69 35.57 93.95 84.77 1.84 52.18 26.00

zh-en en-zh xx-en en-xx

Neural Lexical Neural Lexical Neural Lexical Neural Lexical
xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 89.49 74.32 4.10 51.25 21.69 89.10 79.48 2.30 33.62 34.52 87.80 80.86 2.42 58.53 31.78 91.91 81.17 1.83 49.49 28.28
SFT
Multi-system
→ xCOMET-QE
Vanilla 90.09 75.50 3.98 51.82 21.72 89.84 80.12 2.23 34.07 35.01 89.13 81.49 2.37 59.82 32.92 92.38 81.67 1.77 50.28 28.91
No Base 90.29 75.71 3.96 52.30 21.97 89.80 79.92 2.27 34.14 35.09 89.41 81.56 2.37 60.26 33.19 92.32 81.65 1.79 50.52 29.00
No Ref 90.25 75.55 3.94 51.98 21.80 89.99 79.98 2.24 33.79 34.86 89.32 81.58 2.35 60.08 33.13 92.22 81.33 1.81 50.05 28.77
No GPT-4 89.68 74.71 4.11 51.11 21.42 89.57 80.24 2.23 33.89 34.86 88.44 81.15 2.42 58.86 32.17 92.33 81.74 1.77 50.06 28.76
Chosen = Base 89.41 74.70 4.14 51.38 21.65 89.30 79.79 2.26 33.20 34.16 88.17 81.08 2.43 58.91 32.21 91.94 81.21 1.83 49.35 28.26
Chosen = Ref 90.21 74.68 4.05 49.70 20.34 89.52 80.41 2.23 34.42 35.20 88.04 81.06 2.41 57.73 31.20 92.35 81.94 1.75 50.12 28.73
Chosen = GPT-4 90.60 76.38 3.87 52.71 22.06 89.74 79.50 2.30 33.86 34.78 89.81 81.67 2.34 60.53 33.02 91.96 80.83 1.85 50.73 28.89
→ CometKiwi
Vanilla 90.25 75.82 3.94 52.21 21.98 90.09 80.45 2.22 34.23 35.16 89.26 81.70 2.34 60.01 33.06 92.44 81.93 1.77 50.49 29.03
→ chrF
Vanilla 90.06 74.28 4.10 48.66 19.82 89.26 80.01 2.26 34.75 35.52 87.61 80.82 2.44 56.97 30.56 92.20 81.70 1.77 50.30 28.91
No Ref 90.06 75.61 4.01 52.39 22.13 89.49 79.38 2.33 33.89 34.94 89.21 81.49 2.38 60.17 33.23 91.99 80.96 1.86 50.57 29.06
Mono-system
→ xCOMET-QE
Vanilla 89.74 74.84 4.04 51.39 21.49 89.57 80.24 2.24 33.45 34.26 88.51 81.29 2.39 59.05 32.15 92.17 81.54 1.80 49.41 28.37
CPO
Multi-system
→ xCOMET-QE
Vanilla 91.03 76.32 3.69 51.65 21.09 89.99 81.38 2.13 31.67 31.03 89.95 81.89 2.27 59.83 32.41 92.75 83.60 1.64 47.69 25.63
No Ref 90.50 76.60 3.75 52.96 21.86 90.32 80.72 2.24 34.00 34.28 89.91 81.86 2.31 60.59 32.77 92.44 81.97 1.78 50.67 28.55
No Base 90.80 75.98 3.79 51.96 21.67 90.09 81.40 2.09 33.20 33.49 89.59 81.73 2.30 59.94 32.82 92.74 83.13 1.65 48.54 27.17
No GPT-4 91.27 75.23 3.79 49.49 19.91 88.41 80.44 2.26 30.92 29.77 88.81 81.35 2.32 57.91 30.94 92.22 83.16 1.67 46.82 24.53
Chosen = Base 89.59 74.75 4.11 51.34 21.65 89.06 79.83 2.27 32.65 33.47 87.94 81.02 2.44 58.62 31.94 91.75 81.06 1.85 48.56 27.60
Chosen = Ref 90.71 70.87 4.05 41.49 14.40 84.25 78.61 2.40 26.14 24.09 81.95 77.86 2.53 48.75 22.02 86.97 80.01 1.79 39.81 17.62
Chosen = GPT-4 89.77 76.05 3.92 53.10 21.12 87.44 77.07 2.58 32.40 31.93 89.69 80.99 2.40 60.42 31.72 90.50 78.81 2.02 50.22 27.00
→ CometKiwi
Vanilla 91.03 76.69 3.61 52.68 21.40 89.35 81.27 2.23 31.90 30.95 89.82 82.04 2.24 60.22 32.58 92.19 83.64 1.71 48.11 25.35
→ chrF
Vanilla 89.56 68.89 4.50 38.41 12.48 85.29 79.47 2.43 28.37 26.33 78.51 75.62 2.83 45.32 19.41 88.89 80.99 1.84 42.50 19.33
No Ref 89.43 75.91 3.97 53.42 22.37 88.20 77.93 2.52 33.71 33.97 89.26 81.52 2.38 60.63 33.08 90.83 79.37 2.00 51.11 28.32
Mono-system
→ xCOMET-QE
Vanilla 90.82 76.01 3.77 51.92 21.44 90.14 81.75 2.15 33.22 33.80 89.35 81.80 2.29 59.52 32.26 92.69 82.91 1.69 49.02 27.74
Optimized 91.06 76.28 3.68 51.90 21.38 90.44 82.35 2.07 33.32 33.70 89.58 81.97 2.25 59.65 32.16 92.87 83.47 1.66 49.11 27.57

Table 9: Comprehensive downstream evaluation for the WMT’22 dataset, reporting xCOMET-QE, CometKiwi,
Metric-X, chrF, and BLEU scores for all models and language pairs. Learning objectives are indicated in bold font,
candidate settings in italics, and alignment metrics are preceded by an arrow (→).



1389

en-cs de-en en-de
Neural Lexical Neural Lexical Neural Lexical

xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 85.90 73.23 1.91 52.57 27.45 84.79 76.57 3.73 66.64 39.38 84.97 71.97 3.04 61.69 32.78
SFT
Multi-system
→ xCOMET-QE
Vanilla 87.19 74.32 1.78 54.31 28.71 85.29 77.01 3.59 67.82 40.50 85.75 72.56 2.91 61.75 32.81
No Base 86.89 73.60 1.82 54.46 28.83 85.49 77.19 3.58 68.17 40.88 85.41 72.40 2.88 61.81 32.57
No Ref 87.44 74.13 1.83 54.43 29.20 85.46 77.19 3.64 67.90 40.46 85.78 72.71 2.91 62.05 33.15
No GPT4 87.42 74.57 1.81 53.84 28.62 84.76 76.80 3.74 67.05 39.47 85.67 72.60 2.90 61.59 32.63
Chosen = Base 86.89 74.05 1.93 52.71 27.72 84.86 76.88 3.71 67.28 39.59 85.24 72.09 2.99 61.81 32.98
Chosen = Ref 87.68 74.94 1.81 53.56 28.18 85.08 76.78 3.62 66.26 38.70 86.14 72.93 2.86 61.36 32.16
Chosen = GPT4 86.89 73.06 1.89 55.36 29.20 85.94 77.70 3.52 68.55 41.07 85.25 72.07 2.92 62.49 33.35
→ CometKiwi
Vanilla 87.19 74.65 1.77 54.27 28.71 85.42 77.16 3.58 68.00 40.54 85.90 72.93 2.83 62.09 32.99
→ chrF
Vanilla 87.15 74.18 1.85 53.91 28.57 84.93 76.61 3.69 65.86 38.47 85.68 72.47 2.90 61.50 32.37
No Ref 87.22 73.40 1.87 54.96 29.50 85.19 77.02 3.66 67.93 40.42 85.49 72.56 2.98 62.46 33.64
Mono-system
→ xCOMET-QE
Vanilla 86.89 74.78 1.86 52.57 27.60 85.37 77.03 3.64 67.64 39.86 85.54 72.80 3.03 61.82 33.10
CPO
Multi-system
→ xCOMET-QE
Vanilla 86.53 76.83 1.65 49.84 23.64 86.18 77.55 3.45 67.15 39.97 87.61 73.39 2.57 58.32 27.66
No Ref 87.48 74.40 1.77 55.51 28.99 86.00 77.80 3.48 68.30 40.60 85.82 73.08 2.79 62.73 32.81
No Base 86.45 76.06 1.71 50.44 25.26 85.80 77.06 3.54 67.32 40.00 87.23 73.00 2.71 59.44 29.86
No GPT4 86.27 76.71 1.64 49.10 23.01 85.96 77.19 3.57 65.40 37.11 87.39 72.99 2.53 57.36 26.45
Chosen = Base 86.71 74.16 1.92 51.74 26.79 84.95 76.91 3.74 66.64 38.79 85.67 72.46 2.98 61.20 32.37
Chosen = Ref 72.09 72.38 1.94 37.30 12.61 82.25 74.74 4.09 55.55 24.83 86.62 69.62 2.92 49.04 17.37
Chosen = GPT4 85.67 70.85 2.06 55.59 27.58 85.41 77.18 3.53 68.10 39.75 83.74 71.58 2.92 63.11 32.22
→ CometKiwi
Vanilla 85.70 76.97 1.73 50.28 23.74 85.76 77.66 3.47 67.43 40.07 87.52 74.21 2.57 59.08 27.90
→ chrF
Vanilla 77.49 73.98 2.02 41.47 15.17 79.30 72.47 4.52 51.67 21.14 86.43 71.61 2.65 52.57 20.35
No Ref 85.71 71.61 2.09 56.21 28.93 85.13 77.15 3.57 68.15 40.49 84.20 71.56 3.12 63.31 33.63
Mono-system
→ xCOMET-QE
Vanilla 87.92 76.62 1.76 52.03 26.54 85.72 77.14 3.53 67.22 39.30 87.09 74.07 2.70 61.01 31.70
Optimized 88.39 77.36 1.71 52.11 26.38 86.00 77.76 3.55 67.05 38.79 87.32 74.64 2.57 60.71 31.07

ru-en en-ru zh-en
Neural Lexical Neural Lexical Neural Lexical

xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 86.22 80.04 2.56 55.59 28.45 89.08 74.89 2.63 49.90 23.99 90.45 76.06 3.68 45.44 18.79
SFT
Multi-system
→ xCOMET-QE
Vanilla 87.66 80.62 2.53 56.62 29.52 89.48 75.83 2.50 50.74 24.80 91.11 76.98 3.61 46.37 19.72
No Base 87.96 80.55 2.55 56.80 29.50 89.53 75.86 2.52 50.72 24.66 91.04 77.15 3.57 46.70 19.93
No Ref 87.79 80.64 2.54 56.64 29.34 89.23 75.43 2.58 50.88 24.82 91.16 76.92 3.58 46.52 19.95
No GPT4 86.62 80.13 2.56 55.99 29.03 89.58 75.85 2.47 50.36 24.36 90.72 76.52 3.70 45.69 19.28
Chosen = Base 86.39 80.10 2.57 55.72 28.79 88.94 74.68 2.68 50.17 24.24 90.43 76.33 3.72 45.62 18.99
Chosen = Ref 86.03 79.94 2.56 55.01 28.26 89.83 76.40 2.45 50.35 24.38 91.23 76.47 3.63 44.89 18.73
Chosen = GPT4 88.30 80.79 2.57 57.15 29.47 88.86 75.45 2.60 51.26 24.72 91.68 77.92 3.46 47.38 20.22
→ CometKiwi
Vanilla 87.70 80.75 2.52 56.77 29.68 89.56 75.87 2.48 50.99 24.88 91.19 77.07 3.55 46.69 19.89
→ chrF
Vanilla 85.27 79.62 2.58 54.54 28.04 89.65 75.96 2.48 50.33 24.23 91.05 76.15 3.71 44.23 18.31
No Ref 87.63 80.64 2.56 56.67 29.43 88.88 75.00 2.61 51.14 24.83 91.02 76.99 3.61 46.74 19.95
Mono-system
→ xCOMET-QE
Vanilla 86.94 80.33 2.56 55.86 28.64 89.16 75.09 2.64 50.02 24.10 90.84 76.61 3.64 45.89 18.97
CPO
Multi-system
→ xCOMET-QE
Vanilla 88.43 80.99 2.44 56.88 29.63 91.54 79.24 2.13 48.22 21.98 91.94 77.56 3.41 46.69 19.65
No Ref 88.50 81.12 2.50 57.26 29.55 89.33 76.05 2.47 50.98 24.10 91.50 78.04 3.45 47.58 20.12
No Base 87.98 80.69 2.46 57.06 29.77 90.90 77.72 2.26 48.94 23.02 91.89 77.09 3.45 46.42 19.67
No GPT4 87.00 80.29 2.47 55.39 28.24 91.41 79.47 2.13 47.24 21.10 91.92 77.21 3.46 45.18 18.62
Chosen = Base 86.11 79.99 2.58 55.40 28.16 88.97 75.01 2.67 49.68 23.89 90.61 76.46 3.70 45.48 18.88
Chosen = Ref 77.69 76.31 2.70 46.94 20.32 89.79 76.43 2.20 39.65 14.17 90.11 72.25 3.88 39.36 14.29
Chosen = GPT4 88.19 80.22 2.65 56.56 27.95 87.25 73.65 2.78 50.57 22.96 90.68 77.67 3.59 47.74 19.60
→ CometKiwi
Vanilla 88.34 81.08 2.44 57.08 29.59 91.08 79.22 2.21 48.53 21.83 91.71 77.91 3.39 47.51 19.89
→ chrF
Vanilla 74.05 74.06 3.00 43.60 17.59 90.38 77.64 2.22 42.21 15.79 89.24 70.90 4.22 36.75 12.42
No Ref 87.70 80.56 2.55 57.13 29.67 87.72 74.05 2.75 51.23 23.90 90.75 77.58 3.61 47.80 20.37
Mono-system
→ xCOMET-QE
Vanilla 87.65 80.86 2.46 56.53 29.09 90.28 77.45 2.38 49.85 23.92 91.79 77.42 3.44 46.34 19.18
Optimized 87.63 80.84 2.45 56.56 29.03 90.64 78.18 2.28 49.94 23.82 91.79 77.58 3.39 46.59 19.31

en-zh xx-en en-xx

Neural Lexical Neural Lexical Neural Lexical
xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 83.92 71.42 2.56 35.58 35.94 88.00 77.74 3.23 52.30 25.37 86.19 73.08 2.42 47.31 29.43
SFT
Multi-system
→ xCOMET-QE
Vanilla 84.89 72.22 2.47 36.50 37.00 88.96 78.46 3.17 53.30 26.38 87.07 73.99 2.30 48.38 30.39
No Base 84.80 72.00 2.50 36.80 37.47 89.07 78.53 3.16 53.57 26.52 86.94 73.70 2.33 48.52 30.50
No Ref 84.78 71.50 2.53 37.05 37.73 89.05 78.47 3.17 53.39 26.41 87.04 73.60 2.36 48.65 30.79
No GPT4 84.50 72.22 2.48 36.26 36.77 88.29 78.02 3.24 52.62 25.84 87.04 74.08 2.31 48.03 30.14
Chosen = Base 84.06 71.38 2.54 35.85 36.39 88.07 77.93 3.25 52.52 25.62 86.52 73.27 2.44 47.52 29.74
Chosen = Ref 84.66 72.81 2.40 36.06 36.28 88.33 77.92 3.19 51.75 25.18 87.29 74.57 2.27 47.86 29.82
Chosen = GPT4 84.75 71.33 2.54 37.51 38.34 89.57 79.06 3.11 54.08 26.67 86.70 73.18 2.39 49.23 30.97
→ CometKiwi
Vanilla 84.90 72.44 2.48 36.43 36.92 89.03 78.57 3.13 53.53 26.53 87.11 74.21 2.29 48.45 30.40
→ chrF
Vanilla 84.40 72.14 2.44 36.59 36.93 87.91 77.62 3.25 51.20 24.86 86.95 73.96 2.31 48.14 30.11
No Ref 84.16 70.78 2.58 37.42 38.38 88.89 78.47 3.19 53.51 26.44 86.65 73.02 2.41 49.04 31.13
Mono-system
→ xCOMET-QE
Vanilla 84.52 72.02 2.53 35.82 36.16 88.55 78.17 3.20 52.74 25.60 86.75 73.87 2.40 47.43 29.60
CPO
Multi-system
→ xCOMET-QE
Vanilla 86.32 75.09 2.36 31.02 29.15 89.77 78.95 3.02 53.47 26.32 88.09 76.75 2.09 44.29 25.15
No Ref 85.84 73.30 2.43 36.43 36.32 89.57 79.26 3.07 54.18 26.59 87.41 74.46 2.27 48.88 30.05
No Base 85.75 74.50 2.30 32.63 31.93 89.52 78.54 3.06 53.44 26.40 87.66 75.84 2.14 45.27 26.99
No GPT4 84.69 74.65 2.45 29.78 27.30 89.16 78.46 3.07 51.94 24.91 87.45 76.62 2.11 43.30 24.02
Chosen = Base 84.64 72.42 2.50 34.26 34.58 88.05 77.95 3.25 52.24 25.22 86.68 73.75 2.41 46.54 28.75
Chosen = Ref 79.65 72.88 2.69 23.12 19.34 84.06 74.22 3.43 44.53 18.10 81.01 73.55 2.33 34.64 15.54
Chosen = GPT4 82.88 69.66 2.81 36.00 35.56 88.99 78.64 3.20 53.95 25.59 85.14 71.40 2.58 48.68 28.99
→ CometKiwi
Vanilla 84.89 74.61 2.52 30.71 28.63 89.58 79.16 3.02 53.97 26.43 87.25 76.71 2.19 44.48 24.99
→ chrF
Vanilla 80.91 73.49 2.69 26.29 22.83 81.79 72.38 3.77 41.46 15.65 83.21 74.76 2.34 37.96 18.13
No Ref 83.08 69.85 2.81 37.64 37.80 88.79 78.73 3.17 54.21 26.74 85.40 71.82 2.60 49.59 30.49
Mono-system
→ xCOMET-QE
Vanilla 85.85 74.47 2.33 34.22 34.00 89.33 78.78 3.06 53.17 25.80 87.94 76.01 2.20 46.65 28.45
Optimized 86.78 75.68 2.25 33.58 32.93 89.36 78.92 3.03 53.28 25.77 88.50 76.87 2.12 46.48 27.99

Table 10: Comprehensive downstream evaluation for the WMT’23 dataset. Metrics, notations and formatting are
the same as in Table 9.
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B Additional Data Details

B.1 Building Preference Datasets in the Mono-System Setting
Following the experimental setup detailed in the main text (Section 3), we here provide further details on
the method used to construct mono-system preference datasets. As a reminder, after generating the K
candidate translations for each source sentence, we have, for all 1 ≤ i ≤ N ,

Ymono
i =

{
y1i , · · · , yKi

}
,

where y1i ⪯ · · · ⪯ yKi are assumed to be sorted in increasing metric score order. For each sample, we
evaluate yBase

i (the greedy-decoded translation) using metric m and check its rank in the set of candidate
translations. We denote it by bi. Sorted in increasing quality order, we thereby have

y1i ⪯ · · · ⪯ ybi−1
i ⪯ yBase

i ⪯ ybii ⪯ · · · ⪯ yKi .

Finally, to determine the chosen and rejected hypotheses, we select two offset parameters or, oc ∈ N, such
that the chosen and rejected options are respectively{

yci = y
min(K,bi+oc)
i

yri = y
max(1,bi−or)
i

.

Intuitively, or and oc control the average quality of the chosen and rejected options in the resulting
preference dataset and ensure that the chosen (resp. rejected) option always has a higher (resp. lower)
quality than the base translation. Table 11 presents the average quality properties for mono-system
preference datasets, and compares them to the multi-system setting.

Neural Lexical
Hyp. xCOMET-QE CometKiwi chrF

Multi-system

Candidate systems
Base 93.09 87.13 58.33
GPT-4 94.58 88.32 60.93
Reference 91.84 86.72 100.00

Vanilla preference dataset Rejected 87.86 84.15 78.48
Chosen 97.24 89.81 75.95

Mono-system

Multi-system replica Rejected 87.80 83.04 55.69
Chosen 97.29 89.20 57.18

Chosen = Low / Rejected = Low Rejected 75.36 75.46 52.95
Chosen 93.60 87.04 57.14

Chosen = Low / Rejected = Mid Rejected 84.54 81.02 54.93
Chosen 93.60 87.04 57.14

Chosen = Low / Rejected = High Rejected 92.15 85.54 55.86
Chosen 93.60 87.04 57.14

Chosen = Mid / Rejected = Low Rejected 75.36 75.46 52.95
Chosen 95.77 88.40 57.43

Chosen = Mid / Rejected = Mid Rejected 84.54 81.02 54.93
Chosen 95.77 88.40 57.43

Chosen = Mid / Rejected = High Rejected 92.15 85.54 55.86
Chosen 95.77 88.40 57.43

Chosen = High / Rejected = Low Rejected 75.36 75.46 52.95
Chosen 98.16 89.84 57.56

Chosen = High / Rejected = Mid Rejected 84.54 81.02 54.93
Chosen 98.16 89.84 57.56

Chosen = High / Rejected = High Rejected 92.15 85.54 55.86
Chosen 98.16 89.84 57.56

Table 11: Average quality properties for xCOMET-QE-based mono-system preference datasets, compared to the
multi-system setting. Multi-system replica is the mono-system dataset that matches the average chosen/rejected
qualities of the multi-system preference data. Other mono-system datasets are represented by their relative average
chosen/rejected qualities.
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B.2 Language Statistics
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Figure 2: Language statistics for preference datasets. The y-axis represents the number of samples, corresponding
percentages are displayed above each bar.
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Figure 3: Language statistics for WMT’22 and WMT’23 test data. The y-axis represents the number of samples,
corresponding percentages are displayed above each bar.


