
Proceedings of the Ninth Conference on Machine Translation (WMT), pages 1318–1331
November 15–16, 2024. ©2024 Association for Computational Linguistics

1318

Scaling Laws of Decoder-Only Models on the Multilingual Machine
Translation Task

Gaëtan Caillaut and Raheel Qader and Mariam Nakhlé and Jingshu Liu and Jean-Gabriel Barthélemy

Lingua Custodia, Paris, France
firstname.name@linguacustodia.com

Abstract

Recent studies have showcased remarkable ca-
pabilities of decoder-only models in many NLP
tasks, including translation. Yet, the machine
translation field has been largely dominated by
encoder-decoder models based on the Trans-
former architecture. As a consequence, scaling
laws of encoder-decoder models for neural ma-
chine translation have already been well stud-
ied, but decoder-only models have received less
attention. This work explores the scaling laws
of decoder-only models on the multilingual and
multidomain translation task. We trained a col-
lection of six decoder-only models, ranging
from 70M to 7B parameters, on a sentence-
level, multilingual (8 languages) and multido-
main (9 domains) dataset. We conducted a
series of experiments showing that the loss of
decoder-only models can be estimated using a
scaling law similar to the one discovered for
large language models, but we also show that
this scaling law has difficulties to generalize to
too large models or to a different data distribu-
tion. We also study different scaling methods
and show that scaling the depth and the width
of a model lead to similar test loss improve-
ments, but with different impact on the model’s
efficiency.

1 Introduction

Most modern machine translation systems are
based on Transformers (Vaswani et al., 2017),
with an encoder-decoder architecture. Despite the
tremendous advances made possible with the re-
lease of open-source decoder-only Large Language
Models (LLMs) (Jiang et al., 2023; Biderman et al.,
2023; Touvron et al., 2023), most NLP tasks still
rely on encoder-decoder models. Based on the
statistics obtained from the WMT23 shared task on
general machine translation (Kocmi et al., 2023),
16 out of the 17 participants submitted a system
based on an encoder-decoder model. Yet, recent
studies show that decoder-only models can achieve
comparable results (Gao et al., 2022; Fu et al.,

2023), or even surpass state-of-the-art encoder-
decoder systems, when properly finetuned (Xu
et al., 2023). Moreover, the decoder-only architec-
ture is easier to train on massive amounts of data
as one can simply concatenate documents and feed
as much relevant data as possible into the model
during training ; while encoder-decoder models re-
quires either to pad the inputs or rely on complex
masking strategies (Raffel et al., 2020) to combine
multiple inputs in the same sample.

Furthermore, the decoder architecture is much
more flexible than the encoder-decoder architec-
ture as decoders treat all tokens similarly, while
encoder-decoders make a distinction between input
(source) tokens and output (target) tokens, which
are processed, respectively, by the encoder and the
decoder. As a consequence, it is more tedious to
apply complex self-reasoning mechanisms, such as
chain-of-thought (Wei et al., 2022), or to interface
it with external tools (Schick et al., 2024), because
the outputs of such method (the reasoning process)
should, preferably, be treated as inputs of the model.
For the same reasons, it is much more computation-
ally expensive to rely on an encoder-decoder for
conversational purposes, making this architecture
less efficient for modern workflows such as itera-
tive translation. Indeed, at each round (the user’s
query and the system’s answer) should be appended
to the input side, and reprocessed by the encoder
for the next round. Decoder-only models support it
by design, without needing to recompute the rep-
resentation of the ever-growing inputs. While we
do not explore these directions in this work, we do
leverage the flexibility of the decoder architecture
to include input-or-output parameters. As we are
tackling the multilingual and multidomain machine
translation task, the model needs input tokens to
represent the language direction and the domain.
We propose to train the model to predict the source
language and the domain so that, during inference,
they can be seamlessly predicted or provided by

1319

the user.
Generally speaking, decoder-only models sim-

ply expect the input to be the whole discussion and
process it in a single forward step. Causal masking
enable efficient caching of already computed keys
and values so inference is much cheaper. The main
downside of decoder-only over encoder-decoder
model is the potential inferior quality of the input
representation, as input tokens attend only on past
tokens. But it should not be a major issue, as gener-
ated tokens attend to the whole past sequence, they
do have access to the same quantity of information
as with an encoder-decoder model. In addition, pre-
vious work propose to update the attention mask
so that input tokens can attend to all input tokens
while generated tokens can attend only on past to-
kens (Tay et al., 2022; Raffel et al., 2020).

For all these reasons, we would like to embrace
the decoder architecture for machine translation,
even if it seems to be the exclusive preserve of
encoder-decoder models. The flexibility and the
simpler training setup of decoders should make
them both more suitable and efficient for most real
world applications, and the decoder architecture is
more appropriate to answer the ever-growing de-
mand for iterative, interactive and machine assisted
translation workflow. To this aim, we study the
scaling laws of neural machine translation models
under different settings. Our contributions are as
follow:

• We show that decoder-only models for trans-
lation follow the same scaling law as LLM

• Scaling laws do not scale uniformly across
directions and domains and do not generalize
well to other directions or domains

• Scaling width-wise and depth-wise yield sim-
ilar improvements, but the former is more ef-
ficient

• We discovered a critical issue related to the
packing of training samples in batches and
propose a solution to fix it

2 Background

As the size, data requirement, and training costs of
language models rise, it quickly becomes critical
to estimate the right training configuration for a
given training budget — expressed in number of
floating point operations (FLOP) — required to
train the model. Kaplan et al. (2020) discovered a

power law relationship between the loss of a lan-
guage model and its number of parameters, and
that larger models perform better given the same
amount of data. Even though most work in this area
show that larger models tend to be more powerful,
recent studies show that other parameters must be
taken into account as well. For instance, the Chin-
chilla scaling law (Hoffmann et al., 2022) shows
that model and dataset sizes are loosely tied and
need to be scaled equally. In other words, even
if increasing only the model size will most likely
improve its performances, the compute-optimal so-
lution often requires to also increase the quantity
of training data, while preserving the same train-
ing cost. These findings had a great impact on
LLM research, as researchers stopped increasing
blindly the size of their models, in favor of more
data, when it was necessary. For instance, the 176B
BLOOM (Le Scao et al., 2022) model would prob-
ably have been trained very differently (or not at
all) if this study was released sooner. As stated
in the paper, “in light of revised scaling laws pub-
lished during training, we decided to train the large
models for an additional 25 billion tokens on re-
peated data”, the authors discovered that training
such a big model was sub-optimal given the quan-
tity of data they had. As a consequence, many
researchers started to work on the collection of
large, high quality datasets (Nguyen et al., 2024;
Penedo et al., 2023) or on means to enhance exist-
ing datasets (Sorscher et al., 2022; Tirumala et al.,
2024).

Most of these scaling laws studies focus ex-
clusively on causal generative language models.
While it’s likely that many of these findings could
apply to translation models, the differences be-
tween the two tasks cannot be taken for granted.
Translation is a lot stricter than causal language
modeling since the model has to take into account
each information in the source and precisely gener-
ate the target sentence without adding or omitting
any information. Hence, many studies have natu-
rally emerged to observe the scaling behavior of
translation models (Gordon et al., 2021; Fernan-
des et al., 2023; Ghorbani et al., 2021). Yet, these
works focus on encoder-decoder models. For in-
stance, Gordon et al. (2021); Fernandes et al. (2023)
showed that, when the encoder and the decoder are
scaled proportionally, the model’s loss follow a
power-law similar to the observation made on lan-
guage models. Ghorbani et al. (2021) tackle the

1320

problem in a different setup, and propose to scale
the encoder and the decoder individually. They
show that encoder-scaling and decoder-scaling af-
fect the model’s performances differently, and they
propose a new formula describing the scaling be-
havior of the cross-entropy loss as a bivariate func-
tion of encoder and decoder size. They found out
that scaling decoder is, according to their experi-
ments, always more beneficial, in terms of cross-
entropy loss performance, than scaling the encoder.

Recently, Alves et al. (2024) introduced the Tow-
erInstruct, an LLM based on a decoder architecture
(LLama 2 (Touvron et al., 2023)) finetuned to han-
dle several translation tasks. They show that a prop-
erly finetuned LLM can perform translation better
than state-of-the-art models on high-resource lan-
guages. But the most promising aspect of this work
is the inherent capacity of LLM to handle different
tasks. They finetuned TowerInstruct so it can, for
instance, clean source sentences before translating
them, follow terminological constraints or respect
a given level of language. However, this work is
still empirical and we do not know, yet, the lim-
its of such models. Inspired by the performances
of TowerInstruct, an LLM finetuned for machine
translation tasks, we study, in the following, the
scaling behavior of decoder-based machine trans-
lation models trained from scratch. To this aim,
we fit multiple scaling laws to see if translation
models follow the same scaling laws as language
modeling models (such as the Chinchilla law) or if
they follow their own task-specific law.

3 Training methodology

We present in this section all details related to the
training of our six models.

3.1 Data

To conduct our experiments, we collected many
bilingual data from public repositories (CCMa-
trix (Schwenk et al., 2021b), WikiMatrix (Schwenk
et al., 2021a), UN Parallel Corpus (Ziemski et al.,
2016), Paracrawl (Bañón et al., 2020) and Eu-
roparl (Koehn, 2005)). We also included a subset
of an in-house proprietary dataset collected over
time, as well as a small portion of financial docu-
ments in order to observe the scaling behavior on
domain-specific data. An overview of the dataset
distribution is given in Table 1. The financial data
is divided into 8 sub-domains, which are described
in Appendix A. The data is made of bilingual texts

with one sample being one sentence pair.

Pair Domain Sentences Tokens

en–de general 46.53 M 2694.16 M
finance 1.29 M 65.93 M

en–es general 51.88 M 3525.21 M
finance 1.34 M 71.48 M

en–fr general 81.39 M 5430.77 M
finance 8.29 M 494.47 M

en–it general 26.21 M 1657.58 M
finance 0.73 M 36.17 M

en–nl general 42.74 M 2057.81 M
finance 1.36 M 63.96 M

en–pt general 42.02 M 2086.62 M
finance 0.61 M 22.55 M

en–sv general 46.35 M 2180.64 M
finance 0.24 M 9.68 M

fr–de general 23.60 M 1470.68 M
finance 1.46 M 72.92 M

fr–es general 32.90 M 2731.79 M
finance 0.48 M 23.39 M

fr–it general 28.02 M 1845.84 M
finance 1.10 M 61.63 M

fr–nl general 31.94 M 2034.74 M
finance 0.62 M 29.18 M

Total: general 453.58 M 27 715.84 M
finance 17.53 M 951.36 M
all 471.11 M 28 667.20 M

Table 1: Distribution of the training dataset. It covers 8
languages over 11 language pairs and 9 domains (gen-
eral + 8 financial sub-domains).

We applied temperature sampling (t = 5) in or-
der to increase the visibility of under represented
pairs. Given a collection D of datasets, the proba-
bility of choosing a sample from a dataset Di ∈ D

after temperature sampling is given by Pt(Di) and
is calculated from the original dataset statistical
distribution P (Di).

P (Di) =
Ni

∑|D|
j=0

Nj

T (Di, t) = P (Di)
1.0/t

where Ni is the size of dataset Di and T (Di, t)
is the factor by which the dataset Di should be
oversampled. The new size ki of the oversampled
dataset Di is given by:

ki =

⌊

T (Di, t) ·max
|D|
j=0

(Nj)

max
|D|
j=0

(T (Dj , t)

⌋

1321

Finally, the probability of picking a sample from
dataset Di after temperature sampling is given by

Pt(Di) =
ki

∑|D|
j=0

kj

Since the balance between general and financial is
also extremely skewed, we applied the temperature
sampling separately on the general and financial
domains.

3.2 Tokenizer

As we planned to train a multilingual model, we
trained a Byte-Level BPE tokenizer (Wei et al.,
2021) from scratch because, according to the au-
thors, it is expected to better share the tokens
among the multiple languages, resulting in less
rare tokens and, hence, better embeddings. The
tokenizer has been trained on the whole, non-
oversampled, dataset, and we set the vocabulary
size to 100 000.

We also reserved a small set of special tokens
representing the supported languages and domains.
They are inserted inside the input sequence so the
model knows this information while generating a
translation. For instance, the English language

token is <lang_en> and the general domain token

is <dom_general>.

3.3 Data format

Each sample of the datasets has two categories of
features: inputs and outputs. Input features are
data that will be given during inference, and output
features are data that should be predicted by the
model. Hence, inputs are the source sentence and
the target language (because the model needs to
know the desired target language); and outputs are
the source language, the domain and the translated
sentence.

Predicting the source language is not required,
but we decided to include it to give to the model
the ability to automatically detect the source lan-
guage, as it is a very common and handy feature
of most commercial translation tools. One could
argue that this should be an input parameter, but we
decided that the model should be able to classify by
itself the language of the source sentence. Yet, the
source language token can still be given as input at
inference time to force a particular language. This
also apply to the domain token.

Since we plan to train a decoder-only model,
training samples have been formatted such that the

input tokens are first seen by the model, so the
model has access to the whole input when generat-
ing the first output token. This is why we chose to
encode the sentence pairs in the following format:

SOURCE </src> <target lang> <source

lang> <domain> TARGET <eos>

where </src> and <eos> are special tokens used
to indicate, respectively, the end of the source and
target sequences.

This data format gives the possibility to either
provide the source language if required, or let the
model predict it automatically. For instance, in
the real example below, the green part represents
the mandatory input (source sentence and target
language), the blue part the optional input (source
language) and the gray part is the output generated
by the model.

The buyer pays at an ATM. </src>

<lang_fr> <lang_en> <dom_general>

L’acheteur effectue le paiement sur les

bornes automatiques. <eos>

3.3.1 The <eos> token issue

All the models were trained in the same way LLM
are trained. Sentence pairs were packed until the
training batch was completely filled. These sam-
ples were separated by the usual end-of-sentence
token <eos>. Ideally, one should also apply proper
masking so tokens cannot attend to tokens from
past sentence pairs. However, this features is not
implemented in flash-attention 2 (Dao et al., 2022),
so we trained the models without masks (except
the causal mask). We expect the training task to
be slightly more complex to solve, as the model
now needs to learn to ignore every token before
an <eos> token, but we decided that the gain in
training speed is worthwhile.

Model without <eos> with <eos>

70M 30.80 41.11
160M 39.12 45.13
410M 40.85 46.82

Table 2: BLEU scores of the same models when sources
are prefixed with and without the <eos> token.

Our experiments showed that the quality of trans-
lations generated by the models were far below our
expectations. We found that the absence of the
<eos> token before the source sentence was con-
fusing the model, explaining the drop in translation

1322

quality shown in Table 2. The <eos> token, which
was meant to signal the end of the translation, is
actually also interpreted as a “start of translation”
token. Indeed, during training, all sentence pairs
(except the first one) are prefixed with the <eos>

token. This phenomenon is clear in the example
below, in which three sentence pairs are packed in
the same training sample.

x1-1 x1-2 x1-3 </src> <tgtlang1> <srclang1>

y1-1 y1-2 <eos> x2-1 x2-2 </src> <tgtlang2>

<srclang2> y2-1 y2-2 <eos> x3-1 x3-2 x3-3

</src> <tgtlang3> <srclang3> y3-1 y3-2 y3-3

y3-4 <eos> x4-1 . . .

The impact of <eos> absence on the test loss can
be seen in Figure 1. The model clearly outputs bet-
ter translation when the source sentence is prefixed
with an <eos> token. This is particularly blatant
when comparing the 160M and 410M models, re-
spectively with and without the <eos> token prefix.
The 410M model, albeit being more than two times
bigger than the 160M model, cannot generate better
translations without the <eos> prefix.

1.0

1.2

1.4

1.6

25000 50000 75000 100000

Step

L
o

s
s

<eos> prefix No Yes

Model 70M 160M 410M

Figure 1: Test loss of our three smallest models (70M,
160M and 410M) with and without the <eos> prefix.

This problem should be negligible when train-
ing LLM, as documents are usually longer than
sentence pairs, so <eos> tokens are scarcer. How-
ever, its impact will increase as batch size grows,
since more sentence pairs can be packed into the
same batch, making even more obvious that sen-
tence pairs should start with an <eos> token. We
experimented with a relatively small input length
(512 tokens) and the absence of the <eos> token
during inference already lead to significant drop in
performance. Generally speaking, this issue should
not be ignored when more than one sequence are
packed in a single training sample. When possible,
one should properly mask previous training sam-

ples. As it is not possible, currently, to leverage
the state-of-the-art self-attention algorithms, we
recommend to always prefix all source sentences
with the same prefix token(s), both during training
and inference. An alternative solution might be to
prefix all sequences with a <bos> (begin of sen-
tence) token, but we do not think it will solve this
particular issue since the model will likely see that
most sentence pairs start with the <eos><bos> se-
quence, which is still not the intended behavior. In
the remaining of this paper, we will only consider
translations generated with an <eos> prefix.

3.4 Training strategy

As we aim to train models dedicated to the trans-
lation task, we computed the loss only on target
tokens, so the model learns to generate only text
given a source sentence. This is different from pre-
trained language models as there is no notion of
source and target sentence. The target-only strategy
has proven to be effective for training text-to-text
models (Touvron et al., 2023), and is also similar
to the way loss of encoder-decoder models is cal-
culated, which are commonly used for machine
translation (Costa-jussà et al., 2022). Finally, we
packed as many sentence pairs that we could in a
single batch, in order to increase the training effi-
ciency.

3.5 Model architectures

We used almost the same model architectures used
in the Pythia suite (Biderman et al., 2023), the only
difference being the number of attention head of the
160M model, as flash-attention expects a multiple
of 8. We trained the models using the GPT-NeoX
library (Andonian et al., 2023). We made a few
changes to the data processing scripts in order to
ignore source tokens during the loss computation.
An overview of the different models we trained is
given in Table 3.

All models are trained with a fixed batch size
of 262 144 tokens (512 sequences of length 512
tokens) per GPU, on 8 Nvidia A100 GPUs. The
models are trained in bfloat16 precision using the
Adam optimizer with weight decay set to 0.1, 100
warmup steps and cosine learning rate decay. The
maximum learning rate of sub-1B models is set to
1 × 10−3, and 1 × 10−4 for larger model because of
loss instabilities during the training.

The models are trained for 100 000 steps on ap-
proximately 210B tokens, although only half of
them were actually used to train the model as we

1323

Model Non-embedding Embedding Layers Dim Heads Max lr

70M 70 295 552 51 380 224 6 512 8 1e−3

160M 162 126 336 77 070 336 12 768 16 1e−3

410M 405 071 872 102 760 448 24 1024 16 1e−3

610M 607 448 064 154 140 672 16 1536 16 1e−3

1B 1 011 257 344 205 520 896 16 2048 8 1e−4

6.9B 6 855 204 864 411 041 792 32 4096 32 1e−4

Table 3: Architectures of the trained models. All models are trained with the very same setup (data, random seed,
batch size, number of GPU, . . .). They closely follow the Pythia models but parameters counts do no match because
of the bigger vocabulary size, which increases the size of both the embedding and classification layer.

do not take into account source tokens when calcu-
lating the loss.

4 Experiments and results

In this section, we will study the impact of varia-
tions in training data size and parameters count on
the test loss, for all our models. We will also verify
if these changes correlate with their real transla-
tion performances using standard metrics such as
BLEU and COMET. We finally explore two differ-
ent model scaling strategies.

4.1 Applying machine translation scaling law

1.00

1.25

1.50

1.75

2.00

25000 50000 75000 100000

Step

L
o
s
s

Model
70M

160M

410M

610M

1B

6.9B

Figure 2: Test loss of all model checkpoints. Each step
represents 512 training samples. Larger models always
converge faster given the same amount of training data.

All existing scaling-laws studies show that
larger models exhibit better generalization capa-
bilities (Gordon et al., 2021; Fernandes et al., 2023;
Ghorbani et al., 2021; Rae et al., 2021; Kaplan
et al., 2020; Biderman et al., 2023). This study is
no exception, as can be seen in Figure 2, larger
decoder models always converge faster and require
less training data to reach the same loss value.

We first fitted multiple curves following the set-
ting of Ghorbani et al. (2021); Fernandes et al.

(2023), who studied scaling laws for machine trans-
lation. The form of the law is given below:

L(N) = αN−p + β (1)

where N is the number of trainable parameters,
and the other variables are fitted by minimizing the
huber loss (with a delta value of 0.01) using the
BFGS algorithm from SciPy (Virtanen et al., 2020).

As shown in Figure 3, the test losses of our trans-
lation models can be realistically described by the
power law fitted on observations made on all our
models (the purple dotted line). This suggests that,
indeed, performances of translation models follow
a scaling law, that can be expressed by the for-
mula above. We also fitted curves on less data
points in order to verify if we could estimate the
loss of the 6.9B model. Unfortunately, the fitted
curves become deviate from the real observations
as soon as we remove the data points from the
largest model (the 6.9B model). This is extremely
problematic, as the main goal of scaling laws is
to estimate the performances of not-yet-trained
larger models. Yet, we show that it is difficult to
find a good estimation of the 6.9B model’s perfor-
mance without actually training it. For instance, the
law fitted on the observations made on the subset
70M-160M-410M-610M-1B (in green) cannot give a
good approximation of the unseen 6.9B model’s
performance, and the others are even worse. There-
fore, we think one might be particularly cautious
when applying such scaling laws to estimate larger
models behaviors. Even if our law fitted on all data
points seems to be a good estimator of the test loss,
we think it will deviate from real observations as
the model grows in size.

We also fitted scaling laws on a per-domain and
per-direction basis, on all available data points.
This is particularly interesting as it highlights dis-
crepancies between domains and directions. As

1324

1.0

1.2

1.4

1.6

0.0e+00 2.5e+09 5.0e+09 7.5e+09 1.0e+10

Parameters

L
o

s
s

Model
70M

160M

410M

610M

1B

6.9B

Fitted on

70M−160M−410M

70M−160M−410M−610M

70M−160M−410M−610M−1B

70M−6.9B

all

Figure 3: Test losses estimated by power law fitted on
different subset of models. Laws fitted on all models
and 70M-160M-410M-1B models subset match our ob-
servations.

shown in Figure 4, it seems to be significantly eas-
ier to translate sentences from the kiid (Key In-
vestor Information Document) financial domain,
but translating general domain sentences is the
most difficult, even though the huge majority of our
training set is from the general domain. We suspect
this curve are, somehow, indicators of the diversity
inside each domain. Indeed, kiid documents are,
by law, all following the same structure and must
contain a specific set of information, written in a
certain way. On the contrary, general domain doc-
uments do not follow any rule, making this domain
the most heterogeneous one, and thus the most dif-
ficult to translate. Other phenomena might explain
the differences between these curves. For instance,
we also think the presence of many very specific
and rare words in the regulatory domain explains
partly the lower translation quality in this domain.

We also fitted one curve per direction and ob-
served similar phenomena, as shown in Figure 5.
For example, our models seem to be better at trans-
lating from English to German than from English
to French, although our training dataset contains
twice as many English-French pairs (before over-
sampling).

These observations show that the scaling behav-
ior of translation models depends on the training
data distribution, and thus scaling laws estimated
on a given dataset will not match the real scaling
behavior on another one, although they might have
the same general shape. For instance, it is not re-
alistic to rely on a scaling law fitted on the en–fr
direction to estimate the performances on the en–de
direction.

4.2 Applying language modeling scaling law

So far, we experimented with a scaling law for-
mula based on the model size only, ignoring the

0.6

0.8

1.0

1.2

0.0e+00 2.5e+09 5.0e+09 7.5e+09 1.0e+10

Parameters

L
o
s
s

Model 70M 160M 410M 610M 1B 6.9B

Domain ar ffs general kiid regulatory

Figure 4: Scaling law fitted on the general domain and
some financial subdomains. The law are fitted on the
English-French direction only.

0.8

0.9

1.0

1.1

1.2

0.0e+00 2.5e+09 5.0e+09 7.5e+09 1.0e+10

Parameters

L
o
s
s

Model 70M 160M 410M 610M 1B 6.9B

Direction ende enfr enit enpt ensv

Figure 5: Scaling law fitted on the general domain for
English-X direction.

training dataset size. Even if we just showed that
lower perplexity/loss can be obtained with fewer
data samples (in the case of the en–fr and en–de
directions), larger training datasets still tend to in-
crease the overall models’ quality. But, it’s also
a waste of computing resources to train a model
on more data than required, this is why modern
language modeling scaling formula take into ac-
count both the number of trainable parameter and
the training dataset size. Hence, we fitted multiple
Chinchilla laws following the setting of Hoffmann
et al. (2022), whose form is given below, on various
combinations of input data to see if it can be used
to reliably predict model performances.

L(N,D) = E +
a

Nα
+

b

Dβ
(2)

E, a, α, b and β are variables fitted by minimizing
the huber loss (with a delta value of 0.01) using
the BFGS algorithm from SciPy (Virtanen et al.,
2020) ; N and D are, respectively, the number of
non-embedding parameters of the model and the
number of training samples. More details are given
in the original paper.

As shown in Figure 6, the test loss of our trans-
lation models can be realistically described by the
power law fitted on observations made on all our
models (the purple dotted line). Furthermore, the

1325

1.0

1.2

1.4

1.6

0.0e+00 2.5e+09 5.0e+09 7.5e+09 1.0e+10

Parameters

L
o
s
s

Model
70M

160M

410M

610M

1B

6.9B

Fitted on

70M−160M−410M

70M−160M−410M−610M

70M−160M−410M−610M−1B

70M−6.9B

all

Figure 6: Test losses estimated by the Chinchilla law
fitted on different model subsets. Curves deviate from
the real observations when we remove too many data
points to fit the curve.

general shape of the fitted curves is more stable,
and thus more trustworthy. Indeed, the curve fitted
on all models is very close to the one fitted without
the 6.9B model, indicating that behaviors of larger
models can be better estimated with this form of
scaling law. However, as with the previous scal-
ing law, the curve deviate from real observations
when it is fitted on less data points. While it is
not a surprising finding, it shows that scaling laws
should not be trusted beyond a certain model size.
However, we cannot provide a reasonable window
in which the estimated loss is realistic.

1.00

1.25

1.50

1.75

2.00

1e+18 1e+19 1e+20 1e+21

FLOP

L
o
s
s

Model
70M

160M

410M

610M

1B

6.9B

Figure 7: Test loss of all models, each data point repre-
sents 5k training steps, or 2.5M samples. Given a fixed
FLOP, it’s often more beneficial to increase the dataset
size when possible.

These experiments shows two things. First, the
test loss of decoder-based translation models fol-
lows a scaling law similar to language modeling
models, as the curves fitted on all data points match
the real observations. The form of the law (a power
law) indicates that larger models will always gen-
eralize better, until a certain point where the curve
will stay mostly flat. The second thing we show is
that finding a good and universal estimation for the
model’s loss is very difficult, as fitted curves do not
generalize well beyond an unknown model size.

1.0

1.5

2.0

1
e

+
0

8

1
e

+
0

9

1
e

+
1

0

Parameters

L
o
s
s

Data multiplier

1

2

4

8

Model

70M

160M

410M

610M

1B

6.9B

Figure 8: Estimation of models’ test losses if they were
trained on more data. According to the Chinchilla law
fitted on all available observations, the 70M model
should be on-par with the 410M performances with four
times more data, and the 610M model should match the
6.9B model with only two times more data.

4.3 Correlating scaling law with real

translation quality

Let us suppose we know the function modeling
the real loss given a model size and an amount of
training data. We still do not know if targeting
lower loss values will actually improve the quality
of the translations generated by the model. We pro-
vide in the following an empirical study showing
the correlation between the model’s loss and its
translation performance. We computed BLEU (Pa-
pineni et al., 2002), COMET (Rei et al., 2022a)
and CometKiwi (Rei et al., 2022b) scores for all
six models, and we observed that, indeed, a lower
loss does correlate with a performance increase,
as shown in Table 4. This trend can be observed
on the general domain for all directions, as shown
in Appendix C. However, on the financial domain,
CometKiwi does not always increase, it reaches a
peak on the 610M model, then decreases. We con-
jecture that CometKiwi cannot correctly evaluate
domain specific translations, as it is a reference-free
model trained mainly on generalist sentences. We
show in Appendix C that BLEU and COMET al-
ways increase with models’ size, while CometKiwi
often decreases at some point.

We also compare our models to well established
LLM, and we show that smaller but specialized
models clearly outperforms large and generalist
LLM, as shown by our 410M model performing
on par with Llama 8B. Our largest models are also
real competitors to Tower 7B, even though it has
been trained on much more data and specialized
for machine translation. Tower 7B has the highest
CometKiwi score, but as we just showed, it might

1326

Model BLEU COMET CometKiwi

General domain

70M 29.62 81.31 80.72
160M 32.43 84.00 83.45
410M 33.60 84.81 84.14
610M 34.08 85.10 84.35
1B 34.42 85.10 84.33
6.9B 36.07† 85.88 84.82

Llama3.1 8B 30.43 84.82 84.47
Mistral 7B 23.26 80.08 82.29
Tower 7B 33.50 85.91† 85.02†

Tower 7B* 34.38 86.22 85.23

Financial domain

70M 44.63 86.95 80.88
160M 49.02 88.27 81.80
410M 50.85 88.64 81.73
610M 52.00 88.85 81.71
1B 53.28 89.98‡ 81.61
6.9B 58.34‡ 89.62 81.35

Llama3.1 8B 34.99 84.42 81.75
Mistral 7B 38.93 76.52 76.17
Tower 7B 38.93 86.49 82.66‡

Tower 7B* 39.08 86.52 82.74

Table 4: Evaluation of the six models trained during this
study on our in-house evaluation dataset. We reports
both the scores on the general (G) domain and average
over all financial (F) subdomains. We also include best
performing LLM. As Tower has not been trained on
Swedish, we also evaluate it after removing directions
including Swedish (the Tower 7B* rows). Best scores
on the general and financial domains are indicated by †

and ‡ respectively.

not be reliable for specialized domains. Our mod-
els are obviously performing better on the financial
domain, because only our models were finetuned
on financial data. We also remark that Mistral’s
scores are quite low on the general domain, a quick
manual inspection revealed that the model often
give details and explanations about the produced
translation, even when asked not to. As a conse-
quence, we think that Mistral lower score is mostly
caused by the model not following rigorously the
instructions (see Appendix B).

So, while it certainly boost performances, in-
creasing the model size is often not the optimal
solution to improve the model’s performance. The
training dataset is also extremely important. Indeed,
as can be observed in Figure 7, given a fixed FLOP
budget, it is often preferable to increase the number
of training samples. For instance, the 160M model
appears to always be better than the 410M, 610M
and 1B models given the same FLOP budget, as
indicated by the 160M’s curve being below other

models’ curves. This observation is also validated
by the fitted law, as indicated in Figure 8. Most of
the time, and according to the fitted Chinchilla law,
it would have been better to just train our models
on more data, instead of training larger models. For
instance, we estimate that the 160M model would
be on-par with the 410M model if trained on ap-
proximately twice as many data, which would not
exceed the total number of FLOP of our current
410M model.

To conclude with, we find that scaling laws are
a powerful tool to have a glimpse of what we can
expect from a relatively larger model trained on
the same dataset, but it will probably fail to predict
the performances of much larger models, even if
trained on a similar data distribution. It has to be
kept in mind when using such scaling laws to plan
a training budget: at some point, the fitted law

will fail. Planning a training budget based on obser-
vations made on a 10B model might be fine to train
a 70B model, but completely wrong for a 500B one.
Furthermore, a given scaling law can only estimate
the end performances of a model trained on the
same data distribution used to fit the scaling law.
For instance, we show in Figures 4 and 5 that laws
fitted on different language directions or domains
are very different, and thus should not be applied to
estimate the performances of the model on another
direction.

4.4 Scaling strategies

1.0

1.2

1.4

1.6

0.0e+00 5.0e+18 1.0e+19 1.5e+19

FLOP

L
o

s
s

70M
70M+12l
70M+24l
70M+d1024
70M+d768

1.0

1.2

1.4

1.6

25000 50000 75000 100000

Step

L
o

s
s

70M
70M+12l
70M+24l
70M+d1024
70M+d768

Figure 9: In our experiments, we increased the width
and the depth of the 70M model so the additional cost in
terms of FLOP is similar (left). Scaling the depth or the
width can lead to similar performance gains (right). The
two figures are similar, except that the loss decrease can
be observed either through the FLOP budget prism (left)
or throughout training time / size of dataset (right).

We also studied whether one should favor scal-
ing the depth (increasing the number of layers) or
the width (increasing the hidden size) of a decoder
model. We took the smallest model as a baseline
and scaled it depth-wise and width-wise so that
the increase in parameters increased the total train-
ing FLOP by a similar amount, as illustrated in

1327

Model Layers Dim Non-embedding Embedding FLOP per s. Samples per s.

70M 6 512 70 295 552 51 380 224 1.06 × 1014 1170

70M+d768 6 768 119 599 104 77 070 336 1.74 × 1014 900
70M+12l 12 512 89 209 856 51 380 224 1.37 × 1014 760

70M+d1024 6 1024 178 339 840 102 760 448 2.43 × 1014 725
70M+24l 24 512 127 038 464 51 380 224 1.6 × 1014 445

Table 5: Sizes and architecture of models scaled in depth (70M+12l and 70M+24l) and models scaled in width
(70M+d768 and 70M+d1024) compared to the base 70M model. Increasing the depth of the model has limited
impact on the total parameters count, but decreases significantly the efficiency (higher FLOP per second but less
training samples per second). Scaling the width of the model takes advantage of modern GPU architectures, but
adds many trainable parameters.

Figure 9. An overview of the scaled model archi-
tectures can be seen in Table 5. Interestingly, we
observed that both scaling methods yield the same
performance improvement. As shown in Figure 9,
given a similar FLOP cost, scaling the depth or the
width seems to have the very same impact on the
test loss.

Generally speaking, scaling depth-wise lead to
smaller, but less efficient models. Indeed, modern
hardware architecture can handle more efficiently
large matrix products than many smaller matrix
products. As shown in Table 5, width-scaled mod-
els are faster than depth-scaled models because the
GPU can do more FLOP per second.

5 Conclusion

This work describes the behavior of decoder-only
models on the multilingual multidomain machine
translation task. We trained six models whose num-
ber of parameters range from 70M to 6.9B on sen-
tence pairs in eight European languages. We found
that scaling laws for machine translation cannot
describe the general behavior of translation mod-
els, but they can still provide good estimation in a
given domain, language-pair, and range of model
sizes’. Indeed, We show that decoder-only models
for translation tend to scale similarly as language
models, as the Chinchilla law can also be applied
to our models. As such, we recommend to train
machine translation models using the same training
recipes as large language models. While we think
it is true for most, if not all, NLP tasks, more work
need to be carried out to validate this hypothesis.
However, we also highlight a critical limitation of
scaling laws: they cannot generalize well beyond
an unknown model and/or training dataset size. As
models tend to be larger through time, it will be

extremely important to find ways to detect early
unreasonable deviations of the “reference” scaling
laws on which larger models are build.

We also show that models scaled width-wise ap-
pear to be more FLOP efficient than models scaled
depth-wise, while reaching almost the same loss.
Our experiments need to be continued in order to
see when increasing the depth of the model starts
to be more valuable than increasing its width. But,
generally speaking, increasing the linearly both the
depth and the width seems to be a good trade-off
between efficiency and parameters count.

Efficient training requires packing as many sen-
tence pairs as possible in a training batch. We dis-
covered that unexpected biases can be introduced
if proper masking is not applied, that is to say, if se-
quences can attend to previous ones. Since it is not
possible with current state-of-the-art optimization
methods, one must carefully format the training in-
put data. We suggest dropping the end-of-sentence

token, commonly used to signal the end of text
generation, in favor of a start-of-translation token
signaling the start of a new source sentence and,
therefore, the end of the generated target sentence.

This study has been conducted on sentence-level
pairs only. While this setup is a bit outdated, it
is still the first time a comprehensive study has
been made on multilingual machine translation us-
ing decoder-only architectures. Nevertheless, we
expect decoder models to be easy to adapt to the
document-level translation task, as one can simply
finetune a sentence-level decoder with non-shuffled
sentence pairs from a corpus of parallel documents.

6 Acknowledgment

This project was provided with computer and stor-
age resources by GENCI at IDRIS thanks to the

1328

grant 2023-AD011014445 on the supercomputer
Jean Zay’s V100 and A100 partitions.

References

Duarte M. Alves, José Pombal, Nuno M. Guerreiro, Pe-
dro H. Martins, João Alves, Amin Farajian, Ben Pe-
ters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal,
Pierre Colombo, José G. C. de Souza, and André F. T.
Martins. 2024. Tower: An open multilingual large
language model for translation-related tasks.

Alex Andonian, Quentin Anthony, Stella Biderman, Sid
Black, Preetham Gali, Leo Gao, Eric Hallahan, Josh
Levy-Kramer, Connor Leahy, Lucas Nestler, Kip
Parker, Michael Pieler, Jason Phang, Shivanshu Puro-
hit, Hailey Schoelkopf, Dashiell Stander, Tri Songz,
Curt Tigges, Benjamin Thérien, Phil Wang, and
Samuel Weinbach. 2023. GPT-NeoX: Large Scale
Autoregressive Language Modeling in PyTorch.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale acqui-
sition of parallel corpora. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4555–4567, Online. Association
for Computational Linguistics.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Patrick Fernandes, Behrooz Ghorbani, Xavier Garcia,
Markus Freitag, and Orhan Firat. 2023. Scaling laws
for multilingual neural machine translation. In In-
ternational Conference on Machine Learning, pages
10053–10071. PMLR.

Zihao Fu, Wai Lam, Qian Yu, Anthony Man-Cho So,
Shengding Hu, Zhiyuan Liu, and Nigel Collier. 2023.

Decoder-only or encoder-decoder? interpreting lan-
guage model as a regularized encoder-decoder. arXiv
preprint arXiv:2304.04052.

Yingbo Gao, Christian Herold, Zijian Yang, and Her-
mann Ney. 2022. Is encoder-decoder redundant for
neural machine translation? In Proceedings of the
2nd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
12th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
562–574.

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur
Bapna, Maxim Krikun, Xavier Garcia, Ciprian
Chelba, and Colin Cherry. 2021. Scaling laws
for neural machine translation. arXiv preprint
arXiv:2109.07740.

Mitchell A Gordon, Kevin Duh, and Jared Kaplan. 2021.
Data and parameter scaling laws for neural machine
translation. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5915–5922.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, et al. 2022. Training compute-
optimal large language models. In Proceedings of the
36th International Conference on Neural Information
Processing Systems, pages 30016–30030.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondřej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, et al. 2023. Findings of the
2023 conference on machine translation (wmt23):
Llms are here but not quite there yet. In Proceedings
of the Eighth Conference on Machine Translation,
pages 1–42.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
machine translation summit x: papers, pages 79–86.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.

http://arxiv.org/abs/2402.17733
http://arxiv.org/abs/2402.17733
https://doi.org/10.5281/zenodo.5879544
https://doi.org/10.5281/zenodo.5879544
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417

1329

Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai,
Hieu Man, Nghia Trung Ngo, Franck Dernoncourt,
Ryan A. Rossi, and Thien Huu Nguyen. 2024. Cul-
turaX: A cleaned, enormous, and multilingual dataset
for large language models in 167 languages. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 4226–
4237, Torino, Italia. ELRA and ICCL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for falcon llm: outperforming curated corpora with
web data, and web data only. arXiv preprint
arXiv:2306.01116.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Ricardo Rei, José GC De Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André FT Martins.
2022a. Comet-22: Unbabel-ist 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585.

Ricardo Rei, Marcos Treviso, Nuno M Guerreiro,
Chrysoula Zerva, Ana C Farinha, Christine Maroti,
José GC De Souza, Taisiya Glushkova, Duarte M
Alves, Alon Lavie, et al. 2022b. Cometkiwi: Ist-
unbabel 2022 submission for the quality estimation
shared task. arXiv preprint arXiv:2209.06243.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2021a. Wiki-
matrix: Mining 135m parallel sentences in 1620 lan-
guage pairs from wikipedia. In Proceedings of the

16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 1351–1361.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Édouard Grave, Armand Joulin, and Angela Fan.
2021b. Ccmatrix: Mining billions of high-quality
parallel sentences on the web. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6490–6500.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya
Ganguli, and Ari Morcos. 2022. Beyond neural scal-
ing laws: beating power law scaling via data pruning.
Advances in Neural Information Processing Systems,
35:19523–19536.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia,
Jason Wei, Xuezhi Wang, Hyung Won Chung, Sia-
mak Shakeri, Dara Bahri, Tal Schuster, et al. 2022.
Ul2: Unifying language learning paradigms. arXiv
preprint arXiv:2205.05131.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan,
and Ari Morcos. 2024. D4: Improving llm pretrain-
ing via document de-duplication and diversification.
Advances in Neural Information Processing Systems,
36.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

https://aclanthology.org/2024.lrec-main.377
https://aclanthology.org/2024.lrec-main.377
https://aclanthology.org/2024.lrec-main.377
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

1330

Junqiu Wei, Qun Liu, Yinpeng Guo, and Xin Jiang.
2021. Training multilingual pre-trained language
model with byte-level subwords. arXiv preprint
arXiv:2101.09469.

Haoran Xu, Young Jin Kim, Amr Sharaf, and
Hany Hassan Awadalla. 2023. A paradigm shift
in machine translation: Boosting translation perfor-
mance of large language models. arXiv preprint
arXiv:2309.11674.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The united nations parallel corpus
v1. 0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3530–3534.

A Full data distribution

Our models were trained on 11 language directions
and 9 domains (8 are financial subdomains + gen-
eral domain). The list 8 financial subdomains are
given below:

am Asset Management

ar Annual Report

corporateAction Corporate Action Document

equi Equity Research

ffs Fund Fact Sheet

kiid Key Investor Information Document

lifeInsurance Life Insurance Document

regulatory Regulatory Document

B Prompt templates

We used the following system prompt to generate
translation with Llama, Tower and Mistral:

You a r e an e x p e r t t r a n s l a t o r .
The u s e r w i l l a sk you t o

p roduce t r a n s l a t i o n s ,
g e n e r a t e o n l y t h e asked
t r a n s l a t i o n , do no j u s t i f y

nor e x p l a i n a n y t h i n g .

We used the following instruction template to
query the models:

T r a n s l a t e from {SOURCE_LANGE}
t o {TARGET_LANG} t h e t e x t
below .

{SOURCE_TEXT}

C Models’ performances per direction

Performances of all models increase as parameters
counts increase, regardless of the scoring method,
as shown in Figures 10 and 11.

PT−EN SV−EN

FR−NL IT−EN IT−FR NL−EN NL−FR

ES−FR FR−DE FR−EN FR−ES FR−IT

EN−IT EN−NL EN−PT EN−SV ES−EN

DE−EN DE−FR EN−DE EN−ES EN−FR

20

25

30

35

40

45

20

25

30

35

40

45

20

25

30

35

40

45

20

25

30

35

40

45

20

25

30

35

40

45

70M
160M

410M
610M

1B
6.9B

PT−EN SV−EN

FR−NL IT−EN IT−FR NL−EN NL−FR

ES−FR FR−DE FR−EN FR−ES FR−IT

EN−IT EN−NL EN−PT EN−SV ES−EN

DE−EN DE−FR EN−DE EN−ES EN−FR

0.75

0.80

0.85

0.90

0.75

0.80

0.85

0.90

0.75

0.80

0.85

0.90

0.75

0.80

0.85

0.90

0.75

0.80

0.85

0.90

70M
160M

410M
610M

1B
6.9B

PT−EN SV−EN

FR−NL IT−EN IT−FR NL−EN NL−FR

ES−FR FR−DE FR−EN FR−ES FR−IT

EN−IT EN−NL EN−PT EN−SV ES−EN

DE−EN DE−FR EN−DE EN−ES EN−FR

0.75

0.80

0.85

0.75

0.80

0.85

0.75

0.80

0.85

0.75

0.80

0.85

0.75

0.80

0.85

70M
160M

410M
610M

1B
6.9B

Figure 10: From top to bottom, BLEU, COMET and
CometKiwi scores computed on the test dataset for all
models and directions, on the general domain.

1331

PT−EN SV−EN

FR−NL IT−EN IT−FR NL−EN NL−FR

ES−FR FR−DE FR−EN FR−ES FR−IT

EN−IT EN−NL EN−PT EN−SV ES−EN

DE−EN DE−FR EN−DE EN−ES EN−FR

40

50

60

70

80

40

50

60

70

80

40

50

60

70

80

40

50

60

70

80

40

50

60

70

80

70M
160M

410M
610M

1B
6.9B

PT−EN SV−EN

FR−NL IT−EN IT−FR NL−EN NL−FR

ES−FR FR−DE FR−EN FR−ES FR−IT

EN−IT EN−NL EN−PT EN−SV ES−EN

DE−EN DE−FR EN−DE EN−ES EN−FR

0.86

0.88

0.90

0.92

0.86

0.88

0.90

0.92

0.86

0.88

0.90

0.92

0.86

0.88

0.90

0.92

0.86

0.88

0.90

0.92

70M
160M

410M
610M

1B
6.9B

PT−EN SV−EN

FR−NL IT−EN IT−FR NL−EN NL−FR

ES−FR FR−DE FR−EN FR−ES FR−IT

EN−IT EN−NL EN−PT EN−SV ES−EN

DE−EN DE−FR EN−DE EN−ES EN−FR

0.78

0.80

0.82

0.84

0.78

0.80

0.82

0.84

0.78

0.80

0.82

0.84

0.78

0.80

0.82

0.84

0.78

0.80

0.82

0.84

70M
160M

410M
610M

1B
6.9B

Figure 11: From top to bottom, BLEU, COMET and
CometKiwi scores computed on the test dataset for all
models and directions, averaged over all financial sub-
domains.

