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Abstract
Preference Optimization (PO) techniques are
currently one of the state of the art techniques
for fine-tuning large language models (LLMs)
on pairwise preference feedback from human
annotators. However, in machine translation,
this sort of feedback can be difficult to so-
licit. Additionally, Kreutzer et al. (2018) have
shown that, for machine translation, pairwise
preferences are less reliable than other forms
of human feedback, such as 5-point ratings.

We examine post-edits to see if they can be a
source of reliable human preferences by con-
struction. In PO, a human annotator is shown
sequences s1 and s2 and asked for a preference
judgment, while for post-editing, editors cre-
ate s1 and know that it should be better than
s2. We attempt to use these implicit prefer-
ences for PO and show that it helps the model
move towards post-edit-like hypotheses and
away from machine translation-like hypothe-
ses. Furthermore, we show that best results are
obtained by pre-training the model with super-
vised fine-tuning (SFT) on post-edits in order
to promote post-edit-like hypotheses to the top
output ranks.

1 Introduction

The current state of the art methods for train-
ing large language models offline on human pref-
erence data are Direct Preference Optimization
(DPO) (Rafailov et al., 2023) or Identity Prefer-
ence Optimization (IPO) (Gheshlaghi Azar et al.,
2024). Instead of training a separate reward model
and then performing reinforcement learning, these
methods train directly on the collected preference
data by deriving a directly optimizable loss func-
tion from the preference model.

However, in some domains, the pairwise pref-
erence annotations required for using these meth-
ods have been found to be less reliable than other
annotation schemes. Kreutzer et al. (2018) find
that inter-rater reliability for pairwise ranking of
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Figure 1: The generative process for preference opti-
mization is that two sequences s1 and s2 are given,
and a preference judgment s1 > s2 is generated (up-
per graph). The data generating process of post-editing
yields reliable preferences by construction: Given s2
and the implicit preference that s1 > s2, create s1
(lower graph). We propose using the implicit prefer-
ences from post-editing for preference optimization.

machine translation outputs to be less than that
of 5-point rating. In the field of translation, there
are many different dimensions on which one trans-
lation may be better than another, e.g. fluency,
faithfulness, formality, terminology, etc. (Lommel
et al., 2013). This poses a problem for human an-
notators when they are presented with two plausi-
ble translations.

We propose using the data generated by post-
editing to yield reliable preferences by construc-
tion. The current generative process for preference
data is that two sequences s1 and s2 are given, and
a preference judgment s1 > s2 is sought, yield-
ing the generative process s1 → s1 > s2 ← s2.
We propose using data generated by the following
process: Given s2 and the implicit preference that
s1 > s2, create s1, yielding the generative process
s1 > s2 → s1 ← s2 (see Fig. 1).

Post-editing is already a common practice in the
translation community to clean up raw-MT out-
puts before publishing. Post-editors create new se-
quences that they prefer with regards to the qual-
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ity expected in their domain. Typically, the origi-
nal raw-MT output is discarded and the post-edit is
published. If this data is used for training, the post-
edit is treated as a new reference for supervised
fine-tuning (SFT). This ignores, however, the fact
that the post-edit is not just a new reference transla-
tion but also a quality judgment of what in the raw-
MT was erroneous. Using PO objectives allows
us to fine-tune an LLM to translate in a way that
is more in line with the post-editors’ implicit pref-
erences. However, PO does not necessarily pro-
mote the preferred sequence to become the argmax
output of the model, but rather re-ranks sequences
within the model’s probability space. If the two
sequences are both unlikely under the model’s out-
put distribution, they will remain unlikely but their
relative probability will respect the preferences.
We show that best results are obtained by pre-
training the model on post-edits with SFT, promot-
ing post-edits to the top ranks, followed by fine-
tuning with a PO loss. This combined training
teaches the model to prefer and promote post-edits
such that reference-like translations are produced
but also dispreferred machine-translation-like hy-
potheses are avoided.

2 Related Work

Kreutzer et al. (2018) gather human feedback on
machine translation outputs in the form of 5-point
ratings and as pairwise preferences. They then
use this feedback to train two reward models, one
that is trained on the 5-point ratings and is trained
with a regression loss to directly predict a reward
value and one that is trained on pairwise prefer-
ences by fitting a Bradley-Terry model (Bradley
and Terry, 1952) to the preferences as had been
done by Christiano et al. (2017). These reward
models are then used to train machine translation
models. Kreutzer et al. (2018) find that ratings
are more reliable than rankings and that reinforce-
ment learning with a ratings-trained reward estima-
tor yields better results than using rankings-trained
reward estimates.

Berger et al. (2023) fine-tune a pre-trained
NMT model on post-editing data by presenting the
model with both the post-edit and the current MT
hypothesis. At each epoch, the NMT model be-
ing trained generates translations for all training
data. These generated outputs are then compared
to the original post-edits with a token-level diff.
Both sequences are then used as training exam-

ples for the NMT system. However, tokens that
appear in the hypothesis but not the post-edit are
given a negative weight in the loss function. On ex-
amples where the two sequences differ, the model
gets both negative feedback, where the probability
of that token is to be decreased, and positive feed-
back, where the probability should be increased.

Xu et al. (2024b) similarly present the model
with a positive and negative example of machine
translation outputs during training but use a mod-
ified version of the DPO (Rafailov et al., 2023)
loss to optimize it. Their change to DPO adds
an SFT term. The SFT term promotes the pre-
ferred sequence to be the argmax output of the
model while the DPO part of the loss establishes
the distance between the two sequences in log-
probability space. The MT hypotheses that they
generate come from two different LLMs; ALMA-
13B-LoRA (Xu et al., 2024a) and GPT-4 (Ope-
nAI et al., 2024). Additionally, they use reference
translations from the original dataset. The prefer-
ences that they use are predicted by open-source
quality estimation models KIWI-XXL (Rei et al.,
2023) and XCOMET (Guerreiro et al., 2023).

3 Preference Optimization

3.1 Background
Using reinforcement learning with human feed-
back (RLHF) has recently re-emerged as a method
for training LLMs to generate outputs that are pre-
ferred by human annotators (Ziegler et al. (2019),
Ouyang et al. (2022), Bai et al. (2022), inter alia)
without requiring handwritten demonstrations of
preferred behavior which would be required for su-
pervised fine-tuning (SFT). The general recipe is
as follows: pre-train an LLM on in-domain data;
generate multiple completions y for a single input
x (or prompt); have human annotators rank or rate
the completions; train a reward model to predict
rankings or ratings given inputs and completions;
use the trained reward model to predict rewards
for reinforcement learning, frequently with prox-
imal policy optimization (Schulman et al., 2017).
Training a separate model to predict rewards for
reinforcement learning is known as an actor-critic
method.

The reward model in the previous works is struc-
tured as a Bradley-Terry model (Bradley and Terry,
1952), where the probability of preferring y1 over
y2 is given by

p(y1 ≻ y2|x) = σ(rθ(x, y1)− rθ(x, y2))
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where σ is the logistic function and rθ is the re-
ward model that is trained on the pairwise rankings
to give the preferred sequence a higher value. The
reward model can then be used to estimate rewards
for outputs sampled during online training.

This process requires training an additional
model and hiring human annotators to perform
ranking. DPO (Rafailov et al., 2023) is a technique
that obviates the need for a secondary model by in-
stead giving the model both the preferred and dis-
preferred sequences and optimizing a distance be-
tween the two sequence in log-probability space.

If handwritten demonstrations of preferred se-
quences are available, then SFT would typically
be performed. The goal of SFT is to maximize the
probability of the demonstrations under the model.
For text generation, this is done by minimizing
the negative log-probability of each token given
all previous tokens in the sequence.

LSFT (y) = −
|y|∑
i=0

log(π(yi|y0:i−1))

Minimizing this loss promotes the sequence y
to be the argmax output of the model, while re-
inforcement learning increases or decreases the
probability of a sequence with regard to the mag-
nitude of its reward.

3.2 PO Objectives

The DPO loss (Rafailov et al., 2023) is based
on the Bradley-Terry model of human prefer-
ences but, unlike actor-critic reinforcement learn-
ing techniques, it does not train a separate reward
model. Instead they rewrite the reward function
r in terms of the optimal policy and the baseline
model. They notice that the theoretically opti-
mal policy πr, with a KL-divergence constraint, is
equal to the baseline model with its output distribu-
tion re-weighted according to the reward function

πr(y|x) =
1

Z(x)
πref (y|x) exp

(
1

β
r(x, y)

)
where Z is the partition function, which normal-
izes the function to be a proper probability distri-
bution. This formula can also be solved for the
reward function r, such that rewards are expressed
as the difference between two models’ probabil-
ity ratios. If this r is then inserted back into the

Bradley-Terry model, it becomes

p(yw ≻ yl|x) =

σ

(
β log

(
π∗(yw|x)
πref (yw|x)

)
− β log

(
π∗(yl|x)
πref (yl|x)

))
where yw and yl denote the preferred and dispre-
ferred completion, respectively, and π∗ is now the
model we are training to be optimal under the re-
ward function. This probability, p(yw ≻ yl|x)
can be optimized by minimizing the negative log-
probability. With regards to output probability,
the loss monotonically decreases as yw becomes
more probable than yl. Increasing the difference
between the two always decreases the loss.

Gheshlaghi Azar et al. (2024) re-derive a similar
loss with some theoretical advantages. Instead of
training the model to be optimal under the Bradley-
Terry derived reward function, they train the model
to separate the two outputs by a fixed difference in
log-probability space.

LIPO(yw, yl, x) =

+

((
log

(
π∗(yw|x)
πref (yw|x)

)
−log

(
π∗(yl|x)
πref (yl|x)

))
− 1

2β

)2

Because this loss function is minimized when the
log-probability ratio difference is exactly (2β)−1,
and will increase when the outputs move further
apart in log-probability space, the authors claim an
advantage for deterministic preferences, where the
same preferences are seen multiple times during
training. Because the preferences that we use are
deterministic, we opt for the IPO paradigm of PO.

A follow-up work to DPO, focused specifically
on machine translation, additively combines the
DPO loss and the SFT loss (Xu et al., 2024b),
which the authors call Contrastive Preference Op-
timization (CPO). Additionally, they perform an
ad-hoc modification of the DPO loss by dropping
the normalizer πref in the DPO loss so as to not
perform a second forward pass on the reference
model.

LCPO(yw, yl, x) = − log(π∗(yw|x))
− log(σ(β log(π∗(yw|x))− β log(π∗(yl|x))))

We use a reformulation of the CPO loss with
the IPO training objective for our experiments be-
cause our preferences are deterministic. Addition-
ally, we keep the normalizers in the IPO loss be-
cause these can be pre-computed in advance, in-
stead of in a second forward pass, and incur only
a negligible memory and speed penalty.
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Our modified variant of the CPO loss, which
we call dDPO for the deterministic preferences in-
volved in post-editing, is

LdCPO(yw, yl, x) = − log(π∗(yw|x))

+

((
log

(
π∗(yw|x)
πref (yw|x)

)
−log

(
π∗(yl|x)
πref (yl|x)

))
− 1

2β

)2

which is the SFT objective added to the IPO objec-
tive. When we refer to dCPO later in this paper, we
are referring to this modified version of the CPO
objective.

4 Experiments

Data Split BLEU TER CHRF

En→DE
Train 49.4 37.6 71.6
Dev 50.9 36.5 72.5
Test 50.8 36.4 72.8

En→Ru
Train 80.9 13.6 89.9
Dev 80.2 14.9 89.0
Test 76.3 17.4 87.2

Table 1: Token level metrics comparing the WMT APE
datasets’ machine translations to the post-edits.

We fine-tune an LLM for the task of machine
translation under five different conditions: SFT,
IPO, dCPO, and pre-training with SFT followed
by either IPO or dCPO, denoted as SFT→IPO and
SFT→dCPO, respectively, and evaluate with the
neural metrics XCOMET (Guerreiro et al., 2023)
and MetricX (Juraska et al., 2023). Rafailov et al.
(2023) pre-train their large language models on
in-domain data such that they are already able to
perform the requested task to begin with. For
the task single-turn dialogue, they use the An-
thropic Helpful and Harmless dialogue dataset but
because no pre-training data is available, they per-
form SFT on the helpful answers as a pre-training
step. This is similar to our conditions SFT→IPO
and SFT→dCPO.

The LLM that we choose to fine-tune is Tower-
Base by Alves et al. (2024). We make this choice
because it is a multi-lingual LLM pre-trained on
all languages we intend to work with and be-
cause the size of the model is still small enough
to perform a full fine-tune with our resources1.
We opt for Tower-Base instead of Tower-Instruct

1We train on a server with 4x Nvidia A40 GPUs with 48
GB of memory each. The system contains 256GB of RAM
and 64 CPU cores.

because Tower-Instruct has been instruction fine-
tuned for various down-stream tasks and not just
for machine translation. Using Tower-Base in-
stead allows us to perform a SFT step on our
own. We fine-tune in all scenarios with a minimal
prompt "Translate English to German.\nEnglish:
{Source}\nGerman:" for our German examples.
Our Russian examples use a prompt with the lan-
guage name changed. This prompt is used for both
SFT and PO training objectives.

Our post-edits come from WMT Automatic
Post-Editing (APE) shared tasks of previous years.
These datasets contain triples of source, machine-
translation (MT), and post-edit (PE). We focus
on the language pairs En→De from 2020 and
En→Ru from 2019. The En→De source data
comes from Wikipedia and is translated by a black-
box NMT system (Chatterjee et al., 2020). The
En→Ru data comes from the information tech-
nology domain from Microsoft Office localization
work and was translated by Microsoft’s produc-
tion NMT system (Chatterjee et al., 2019). The
En→Ru data contains base64 encoded data and
sequences long enough to cause out of memory er-
rors. We therefore filter out sequences with fewer
than 4 tokens, more than 128 tokens, or more
than 500 characters from the En→Ru training data,
leaving 9290 (source, mt, pe) triples for training.
The En→De training data was already clean and
all 7000 (source, mt, pe) triples were kept for train-
ing.

Table 1 shows the performance of the datasets’
machine translations when compared to their post-
edits in terms of token based metrics, BLEU, TER,
and CHRF (Papineni et al. (2002), Snover et al.
(2006), and Popović (2015)). We see that more
edits were made to the German machine transla-
tions compared to the Russian machine transla-
tions. The Russian data has far more unedited
sequences—of the 9290 examples we have in
our Russian training data after filtering, 5263 are
unedited or 56.7%. To compare, of the 7000 Ger-
man training examples, 448 are unedited or just
6.4%. We keep the unedited data for training as
the SFT and dCPO objectives can still take advan-
tage of unedited data, but filter it out for our analy-
sis later as it is impossible for a model to prefer an
unedited "post-edit" over the machine translation.

We train with fully-sharded data parallelism
(FSDP) in PyTorch using Accelerate (Gugger
et al., 2022) across four GPUs with an effec-
tive batch size of 256 sequences. When possi-
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Without References

En→DE En→Ru
Model XCOMET-XL XCOMET-XXL XCOMET-XL XCOMET-XXL

a APE Data MT 92.78 94.47 93.07ce 91.35ce

b APE Data PE 95.55ac 97.01ac 95.29ace 93.78ace

c Tower Base 94.33a 94.75 85.50 65.07
d SFT 95.63ac 97.01ac 95.29ace 93.55ace

e IPO 95.87ac 97.18ac 89.65c 72.90c

f dCPO 95.67ac 97.51abcde 95.55ace 93.73ace

g SFT→IPO 95.87abcd 97.48abcde 95.62acde 94.40abcdef

h SFT→dCPO 95.91abcdef 97.57abcde 95.85abcdefg 94.76abcdefg

With References

En→DE En→Ru
Model XCOMET-XL XCOMET-XXL XCOMET-XL XCOMET-XXL

a APE Data MT 92.80 94.20 94.99bd 92.68bd

b Tower Base 93.90a 94.44 83.65 65.48
c SFT 95.57ab 96.77ab 95.36bd 93.30abd

d IPO 95.56ab 96.85ab 88.15b 72.64b

e dCPO 95.67ab 97.20abcd 95.36bd 93.06bd

f SFT→IPO 95.94abcde 97.31abcd 95.77abcde 93.91abcde

g SFT→dCPO 96.00abcde 97.36abcd 96.11abcdef 94.14abcde

Table 2: XCOMET-XL and -XXL on the WMT 2020 En->DE and 2019 En->Ru test sets. Higher values are better.
Superscripts indicate which system the given line is significantly better than with α < 0.05 according to pair-wise
bootstrap resampling. We see that initializing with an SFT model and then performing PO yields the best results.

En→De En→Ru
Model w Ref w/o Ref w Ref w/o Ref

Tower Base 1.1396 1.4224 4.1858 8.1576
SFT 0.9174 1.1757 1.2706 1.4246
IPO 0.8240 0.9484 3.0420 5.3263
dCPO 0.8286 1.0092 1.2873 1.4575
SFT→IPO 0.7985 0.9476 1.1554 1.3335
SFT→dCPO 0.7978 0.9558 1.1110 1.2607

Table 3: MetricX 23 XL results with and without references on the WMT 2020 En->DE and 2019 En->Ru test sets.
Lower values are better. Results appear in line with XCOMET-XL and -XXL and reinforce our previous results.

ble, we shared hyperparameters across all runs
and datasets. For example, both IPO and dCPO
have β set to 0.1. Full hyper-parameters can
be found in the Appendix A. We used reference-
free XCOMET-XL as an early stopping criterion,
which was run at the end of each epoch. During
generation, we used greedy decoding.

Because PO techniques requires seeing both the
preferred and the dis-preferred sequence during
the same optimization step, we concatenate them
together along the batch dimension so that both se-

quences are processed in the same forward pass.
This doubling of sequences in each batch requires
that the number of training examples per batch be
halved and the number of gradient accumulation
steps be doubled in order to have the same effec-
tive batch size. This incurs no additional memory
penalty but doubles the time to see the same num-
ber of training examples.

Our initial experiments showed that string-
based metrics actually decrease when using PO
techniques but we did not observe a discernible
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quality difference. This is in line with the obser-
vations reported by (Xu et al., 2024b). Therefore,
we evaluate with neural metrics so that evaluation
could not be biased towards models that produce
superficially similar translations. We evaluate with
XCOMET-XL and -XXL (Guerreiro et al., 2023)
and MetricX 23 (Juraska et al., 2023), both with
and without references.

5 Results

Our XCOMET metric results are shown in Table
2. The evaluation shows that Tower Base is al-
ready competent at performing zero-shot transla-
tion for English to German, achieving reference-
free XCOMET-XL and -XXL scores that are
above the MT hypotheses contained in our dataset;
94.33 and 94.75, respectively. This is in spite of
the fact that the model has not yet been instruction
fine-tuned to perform zero-shot translation.

The lack of instruction fine-tuning is made ob-
vious in the English to Russian results, where the
model is unable to translate well prior to fine-
tuning. Specifically, the Tower Base model fre-
quently translated its instructions to Russian and
ignored the source text, yielding lower scores.
XCOMET-XL and -XXL seem to react differently
to these non-translations with XCOMET-XXL
punishing them more severely than XCOMET-
XL.

Supervised fine-tuning is able to reach the level
of the post-edits contained in the APE datasets
when evaluating with reference-free evaluation.
SFT surpasses the post-edits only with XCOMET-
XL on the En→De data but this improvement is
not significant. Here, we are evaluating the post-
edits included in the dataset as if they were hy-
potheses for the source sentences.

IPO and dCPO are able to improve XCOMET-
XL and -XXL scores for En→De above what the
post-edits achieve, but only for -XXL is this im-
provement significant, as evaluated by pairwise
bootstrap resampling implemented in the COMET
package. For En→Ru, only dCPO is able to sur-
pass post-edits and even then only for XCOMET-
XL.

However, once we initialize the PO methods
with the SFT model, we find our best results.
SFT→dCPO is significantly better than both the
MT and PE data from the dataset, the Tower Base
model, and the SFT model for both En→De and
Ru; while for just En→Ru, it is better than all other

PE −MT
Model Train Dev Test

Base 0.038 0.048 0.049
SFT 0.060 0.070 0.073
IPO 0.120 0.124 0.134
dCPO 0.110 0.115 0.124
SFT→IPO 0.144 0.144 0.157
SFT→dCPO 0.138 0.138 0.150

Table 4: This table shows the average values of the
post-edit log-probabilities minus the machine transla-
tion log-probabilities for the English→German data.
We see that the gap between PE and MT increases more
with PO than it does with SFT.

systems.
Results with references do not differ drastically

and can also be found in Table 2. We also evalu-
ate with MetricX 23 XL (Juraska et al., 2023) and
show our results in Table 3. The relations follow
those of XCOMET and reinforce our conclusions.

6 Analysis

In addition to evaluating the fine-tuned models
with neural metrics, we analyze the behavior of
the models after training to see how the log-
probabilities of the two sequences change com-
pared to the baseline model. Additionally, we use
the log-probabilities as a measure for model pref-
erences. If one sequence is more probable, it is
preferred by the model.

In our analysis, we remove machine translation
and post-edit pairs where the post-edit remains un-
edited. This is because we are looking for differ-
ences in model behavior between machine transla-
tions and post-edits, which can not be done when
they are the same sequence.

6.1 Log Probability Changes

Figures 2 and 3 are split violin plots showing the
difference between log-probabilities before and af-
ter training, for German and Russian respectively.
The left side of each violin shows the post-edit se-
quences’ change from the baseline model’s while
the right side shows the machine translations’ dif-
ference. This way we can examine how each train-
ing method affects the two sequence types individ-
ually. Additionally, we also measure the differ-
ence between the post-edits and machine transla-
tions after training in Tables 4 and 5 for German
and Russian, respectively.
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Figure 2: The difference of the models’ averaged sequence log-probabilities from the baseline model’s on the
WMT 2020 En→De test data. Zero for PE is an average log-probability of −0.516 while for MT it is −0.565.
This violin plot then shows displacement from these baseline values. Dashed horizontal lines indicate quartiles.

SFT IPO CPO SFT->IPO SFT->CPO
Model

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Di
ffe

re
nc

e 
fro

m
 B

as
el

in
e 

Lo
g 

Pr
ob

s

Sequence Type
PE
MT

Figure 3: The difference of the models’ averaged sequence log-probabilities from the baseline model’s on the
WMT 2019 En→Ru test data. Zero for PE is an average log-probability of −1.099 while for MT it is −1.260.
This violin plot then shows displacement from these baseline values. Dashed horizontal lines indicate quartiles.

As we see in Figure 2, if we perform SFT on
post-edits, as would typically be done when treat-
ing post-edits as new references, both the post-
edits and the MT outputs become more likely un-
der our fine-tuned model. Because the post-edits
and MT outputs are highly correlated, they likely
reside very close to each other in the model’s
hidden representation. This means, that with a
smooth mapping from hidden representations to
outputs, increasing the probability of the PE will

also increase the probability of the MT sequence.

For the En→De IPO and dCPO runs, we see
the post-edits stay close to the baseline while
the MT is pushed further down in log-probability
space. Additionally, the distance between the two
sequences increases under PO compared to SFT.
As shown in Table 4, the average distance that PEs
are above MT outputs doubles after PO compared
to SFT.

After the IPO training, both sequences become
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less likely as seen in the split violin plot for IPO
in Figure 2. This method does not have the up-
wards pressure on the preferred sequences that
SFT or dCPO does, so we hypothesize that the
downward pressure on the MT output also drags
the PE sequence down as well; similar to how SFT
increases the probability of MT without training
on it. Alternatively, it could be that in order to es-
tablish a greater distance between the sequences,
probability mass has to be re-allocated to other
possible sequences.

With the En→Ru data, we see that the MT se-
quences benefit more from training than the PE
sequences do, even though they remain unseen,
as shown by the violin plot for SFT in Figure
3. This corresponds to the smaller difference be-
tween PE and MT that we see for SFT when com-
pared to Tower Base in Table 5. The need for more
fine-tuning of the Tower Base model is also vis-
ible in the SFT, SFT-initialized, and dCPO mod-
els’ larger displacement from the Tower Base log-
probabilities. IPO remains close to the 0 point for
both sequences because the only pressure for each
sequence is for them to move further apart; which
is more difficult with the large overlap between the
machine-translations and post-edits.

En→Ru appears similar for IPO, where both se-
quences are moved down in log-probability space,
however the violin plot for dCPO and the SFT ini-
tialized models have a displacement from the base-
line similar to SFT. This is because the baseline
model was unable to perform zero-shot translation
for En→Ru and, since the dCPO loss includes
an SFT term, it learned how to translate which
moved all sequences upwards. Unlike SFT, post-
edits benefit more than machine translations after
dCPO training.

Finally for the En→De SFT initialized models,
we see in Figure 2 that post-edits increase in prob-
ability over the baseline while machine translation
outputs are held close to or below the baseline.
The difference between PE and MT is increased
here compared to the PO only conditions.

We find that this behavior generalizes also to
the development and test sets as shown in Table 4.
For En→Ru, the SFT→IPO model and the dCPO
model both have post-edits and machine transla-
tion increase in likelihood compared to the base-
line. This is again due to the baseline model being
unable to perform zero-shot translation and both
sequences become more likely after it is able to
do so. SFT→dCPO appears similar but far more

PE −MT
Model Train Dev Test

Base 0.039 0.078 0.161
SFT 0.025 0.062 0.133
IPO 0.085 0.125 0.217
dCPO 0.101 0.140 0.240
SFT→IPO 0.110 0.151 0.263
SFT→dCPO 0.192 0.242 0.419

Table 5: This table shows the average values of the
post-edit log-probabilities minus the machine transla-
tion log-probabilities for the En→Ru data. We see that
the gap between PE and MT increases more with PO
than it does with SFT.

stretched out and with MT moved below the base-
line. This model trained for much longer before
reaching its early stopping criterion (SFT→dCPO
stopped after 10 epochs, compared to SFT→IPO
stopping after 2).

The largest improvements in our XCOMET-XL
and -XXL scores coincide with training methods
that both move the post-edit up in log-probability
space while also ensuring that the machine transla-
tions are less likely by enough of a margin. SFT on
its own also increases the probability of machine
translations and does not work to establish a mar-
gin between the two sequences. Additionally, this
shows us that PO successfully moves the model to-
wards generating post-edit-like translations rather
than those like the machine translations.

6.2 Preference Changes

Changes in log-probabilities from the baseline
model do not necessarily indicate whether the
models’ preferences have changed. It could be
that, in (mt, pe) pairs where it is already the case
that pe > mt, the distances between pe and mt
increased, but examples where mt > pe did not
have their ordering changed. To that end, we also
examine the baseline model’s preference in terms
of sequence probability—if a sequence’s average
log probability is strictly greater than that of an-
other sequence, it is preferred. We plot prefer-
ences across all data splits for En→De in Figure
4 and for En→Ru in Figure 5. The exact values
with corresponding confidence intervals are in Ta-
bles 6 and 7, respectively.

For both language pairs, we find that the Tower
Base model does not have strong preferences. On
the En→De data set, it prefers post-edits to ma-
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Figure 4: Here we show the percentage of training examples where the post-edit sequence is preferred in terms of
average log-probability over the machine translation for the WMT En→De dataset. The black lines indicate the
95% confidence intervals for binomial distributed data—non-overlapping confidence intervals indicate a significant
difference.

Method Train Dev Test

Base 55.14% (53.94%, 56.35%) 54.93% (51.73%, 58.12%) 57.80% (54.64%, 60.96%)
SFT 57.88% (56.68%, 59.07%) 59.74% (56.60%, 62.89%) 61.65% (58.53%, 64.76%)
IPO 65.23% (64.08%, 66.39%) 65.85% (62.80%, 68.89%) 68.27% (65.29%, 71.25%)
dCPO 64.33% (63.17%, 65.49%) 65.31% (62.26%, 68.36%) 67.63% (64.63%, 70.63%)
SFT→IPO 67.52% (66.39%, 68.66%) 68.42% (65.43%, 71.40%) 69.87% (66.93%, 72.81%)
SFT→dCPO 66.80% (65.66%, 67.94%) 68.09% (65.10%, 71.08%) 69.34% (66.38%, 72.29%)

Table 6: Percentage of instances where post-edits are preferred over machine translations and their correspond-
ing 95% confidence intervals for Train, Dev, and Test Splits for the WMT En→De 2020 APE Dataset. Non-
overlapping confidence intervals correspond to statistically significant differences with α < 0.05.
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Figure 5: Here we show the percentage of training examples where the post-edit sequence is preferred in terms of
average log-probability over the machine translation for the WMT En→Ru dataset.. The black lines indicate the
95% confidence intervals for binomial distributed data—non-overlapping confidence intervals indicate a significant
difference.

chine translation 57.80% of the time on the test set while for En→Ru this preference occurs 59.49%
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Method Train Dev Test

Base 51.87% (50.33%, 53.42%) 57.78% (52.81%, 62.76%) 59.49% (54.65%, 64.33%)
SFT 49.57% (48.02%, 51.11%) 55.15% (50.14%, 60.15%) 57.22% (52.34%, 62.09%)
IPO 57.31% (55.79%, 58.84%) 60.95% (56.04%, 65.86%) 62.28% (57.50%, 67.06%)
dCPO 58.46% (56.93%, 59.98%) 63.59% (58.74%, 68.43%) 62.28% (57.50%, 67.06%)
SFT→IPO 59.20% (57.68%, 60.72%) 62.53% (57.66%, 67.41%) 63.04% (58.28%, 67.80%)
SFT→dCPO 64.27% (62.79%, 65.75%) 67.28% (62.56%, 72.01%) 68.35% (63.77%, 72.94%)

Table 7: Percentage of instances where post-edits are preferred over machine translations and their correspond-
ing 95% confidence intervals for Train, Dev, and Test Splits for the WMT En→Ru 2019 APE Dataset. Non-
overlapping confidence intervals correspond to statistically significant differences with α < 0.05.

of the time. For En→De, SFT significantly im-
proves this preference on the training data but not
on the development or test data. SFT actually
seems to change the preferences in favor of ma-
chine translations on the En→Ru data; which also
coincides with a decrease in the average distance
between sequences and machine translations in-
creasing in probability more.

When we train with IPO and dCPO on En→De,
we find that both improve the preference for post-
edits up to 68.27% on test data. The improve-
ments above SFT are significant for both models
on the train set while for dev, the confidence inter-
vals overlap, and for test only IPO is significantly
better. On En→Ru, we see a similar improvement
in preferences but only on the training set are they
significant.

Initializing with SFT and then training with PO
on En→De yields the best improvements with
69.87% on test. Both SFT→IPO and SFT→dCPO
are significantly better than SFT across all data
splits. Again, En→Ru shows similar behavior
with only the change on the training set being sig-
nificant.

Across all data splits on En→De, IPO meth-
ods seem to establish a slightly stronger preference
for post-edits which seems to be accounted for by
increase in difference between the two sequence
types as shown in Table 4. For En→Ru, dCPO
is better at establishing this preference which also
coincides with the increase in differences from Ta-
ble 5.

7 Conclusion

Post-editing is part of common translation work-
flows before publishing to clean up raw-MT out-
puts. If the post-edits are used for training pur-
poses, they are treated simply as new references
and the MT output is treated as a by-product. Post-

edits are created with an implicit preference in
mind, that the PE should be better than the MT.
We find that keeping both the PE and MT allows us
to perform preference optimization techniques and
improve translation quality with data that would
otherwise be discarded.

We find that performing supervised fine-tuning
using post-edits as references also increases the
likelihood of the machine translations which re-
mained unseen by the system. However, because
the original machine translations were erroneous
(in order to need correction), it is disadvantageous
to increase their likelihood as well. Using PO
techniques allows the model to establish a larger
margin between the post-edit sequence and the
machine translation sequence in log-probability
space.

Increasing this margin coincides with signifi-
cant improvements in neural translation metrics.
We additionally find that we can measure the mod-
els’ preferences in terms of sequence probability—
if one sequence is more likely it is preferred. Mod-
els trained with SFT do not have a significant
change in preferences compared to the baseline
models but using PO teaches the model to prefer
the post-edits above the machine translations.

In future work, we would like to examine the ef-
fect of the distance between post-edit and machine
translation sequence probabilities. Currently, IPO
sets a single distance for all sequence pairs but this
may be sub-optimal when the sequences are corre-
lated to different degrees. For example, if a post-
edit and machine translation share a large prefix,
the rest of the tokens in the sequences must ac-
count for the distance, while for non-overlapping
sequences all tokens contribute to the distance be-
tween the log-probabilities.
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Table 8: Hyperparameters for all training runs. * in-
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