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Abstract

Translated texts exhibit a range of character-
istics that make them appear distinct from
texts originally written in the same target lan-
guage. With the rise of Large Language Models
(LLMs), which are designed for a wide range of
language generation and understanding tasks,
there has been significant interest in their appli-
cation to Machine Translation. While several
studies have focused on improving translation
quality through fine-tuning or few-shot prompt-
ing techniques, there has been limited explo-
ration of how LLM-generated translations qual-
itatively differ from those produced by Neu-
ral Machine Translation (NMT) models, and
human translations. Our study employs ex-
plainability methods such as Leave-One-Out
(LOO) and Integrated Gradients (IG) to ana-
lyze the lexical features distinguishing human
translations from those produced by LLMs and
NMT systems. Specifically, we apply a two-
stage approach: first, classifying texts based
on their origin —whether they are original or
translations— and second, extracting signifi-
cant lexical features (highly attributed input
words) using post-hoc interpretability methods.
Our analysis shows that different methods of
feature extraction vary in their effectiveness,
with LOO being generally better at pinpoint-
ing critical input words and IG capturing a
broader range of important words. Finally, our
results show that while LLMs and NMT sys-
tems can produce translations of a good quality,
they still differ from texts originally written
by native speakers. We find that while some
LLMs more closely resemble human transla-
tions, traditional NMT systems show distinct
differences, particularly in their use of linguis-
tic features. 1

1 Introduction

The rapid development of large language models
(LLMs) (Radford et al., 2019; Raffel et al., 2020a;

1We release our code publicly at https://github.com/
SFB1102/B6-analysing-translation-artifacts

Touvron et al., 2023; Lu et al., 2024; Team et al.,
2024a; Groeneveld et al., 2024; Alves et al., 2024)
has significantly advanced natural language pro-
cessing (NLP), also in the domain of Machine
Translation (MT) (Zhang et al., 2023; Zhu et al.,
2024) with studies covering various approaches
such as document-level literary translation (Karpin-
ska and Iyyer, 2023), paragraph-level post-editing
with LLMs (Thai et al., 2022), sentence-level trans-
lation (Vilar et al., 2022; Jiao et al., 2023), examin-
ing hallucinations in LLM-generated translations
(Guerreiro et al., 2023), and leveraging LLMs for
evaluation (Kocmi and Federmann, 2023). These
efforts reflect the ongoing shift toward exploring
how well LLMs perform MT compared to tradi-
tional NMT systems.

Although previous work (Zhu et al., 2024; Vilar
et al., 2022; Raunak et al., 2023) have explored how
LLMs and traditional Neural Machine Translation
(NMT) systems develop translation capabilities,
as well as the qualitative differences in their out-
puts and the factors that impact their performance,
a critical gap remains: the comparison of trans-
lations generated by LLMs and NMT models to
those produced by human translators (HT) and texts
originally written by native speakers in the target
language. This comparison raises questions about
translation divergence, as reflected in surface-level
(structural) differences in translations arising from
cross-linguistic variations or translator preferences
(Luo et al., 2024).

Such divergences are well-documented in human
translations (HT), where translators often make
structural choices that vary significantly from the
text originally written in the target language (Deng
and Xue, 2017; Nikolaev et al., 2020). In con-
trast, traditional NMT outputs typically exhibit less
diversity and more literal translations, lacking sig-
nificant structural variation (Freitag et al., 2020;
Bizzoni et al., 2020). Similarly, Vyas et al. (2018);
Briakou and Carpuat (2020) focus on identifying

https://github.com/SFB1102/B6-analysing-translation-artifacts
https://github.com/SFB1102/B6-analysing-translation-artifacts
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semantic divergences in translations that are not
fully equivalent to the original source texts. Re-
cent findings, however, indicate that LLMs tend
to produce translations that are less literal com-
pared to NMT models (Vilar et al., 2022; Raunak
et al., 2023), suggesting that LLMs may bridge the
gap between the rigid literalness of NMT models
and the flexibility of human translations. Under-
standing these divergences is crucial for advancing
translation technologies and ensuring their respon-
sible and effective use. Specifically, this leads us to
investigate the following research questions: how
do LLMs, NMT models, and HT outputs dif-
fer in their translations, and what methods can
effectively identify these differences?

To answer these questions, we conduct a sys-
tematic comparison of LLM, NMT, and HT trans-
lations using explainability techniques (Lundberg
and Lee, 2017; Rajagopal et al., 2021; Yin and Neu-
big, 2022; Wu et al., 2023), namely Leave-One-Out
(LOO) (Li et al., 2016) and Integrated Gradients
(IG) (Sundararajan et al., 2017). Specifically, we
use a two-stage approach: first, we classify texts
in the same target language based on their origin
—whether they are original texts (O) written by na-
tive speakers or translations (T), whether human or
automated. Next, we apply post-hoc interpretabil-
ity methods to extract key features that contribute
to these classifications. Our analysis focuses on
identifying whether the most important features for
O/T classification are consistent across LLM-based,
NMT-based, and human translation outputs.

To understand these distinctions, we perform two
analyses: (i) Feature Overlap Analysis: we calcu-
late the average intersection of the top most impor-
tant lexical features used across different transla-
tion systems to classify O/T, focusing on how much
the most important features identified by explain-
ability techniques overlap across LLM, NMT, and
HT systems, and (ii) Feature Frequency Analysis:
we analyse the frequency distribution of these key
linguistic features within each translation system.

Our findings show that while many LLMs and
NMT systems produce good translations, they
still differ from content originally written by
native speakers. LLMs like Aya-101-13B and
TowerInstruct-7B-v0.2 exhibit alignment with tra-
ditional NMT models, such as DeepL and NLLB-
600M, regarding O/T classification accuracy com-
pared to content originally authored in the target
language. Overall, our results confirm that NMT

translations are more readily distinguishable from
originals, with traditional NMT systems generally
outperforming LLMs in translation quality and con-
sistency. At the same time, human-generated trans-
lations remain distinctly different from those pro-
duced by machines.

Using explainability methods, we identified the
key features that differentiate translations produced
by LLMs, NMT systems, and human translators.
Our findings suggest that LOO is generally bet-
ter at pinpointing the most critical single feature,
while IG is more effective when considering a
broader range of important features. Moreover,
our analysis shows that LLMs like Gemma-7B
and TowerInstruct-7B-v0.2 often align closely with
NMT systems such as M2M-100-418M and DeepL
in their lexical feature selection during translation.
Finally, our findings show that LLMs generally ex-
hibit PoS patterns more aligned with HT than NMT
models, particularly in the use of adverbs and aux-
iliary verbs. However, human translations consis-
tently exhibit lower overlap with certain linguistic
features from both LLMs and NMT systems, in-
dicating that despite some shared patterns, human
translations retain a unique quality.

The paper is structured as follows: Section 2 out-
lines our experimental design, and Sections 2.1 and
2.2 detail the data and models used in our study.
Section 3 discusses our strategies for evaluation
of translation quality and methods we employ for
extracting important distinctive features of origi-
nal and translated texts, while Section 4 examines
the differences in classification features between
LLMs, NMT systems, and human translations. Fi-
nally, Section 5 concludes the paper.

2 Experimental Design

To identify important explanations with respect to
O/T classification in the outputs of translation sys-
tems, we apply explainability methods to each sen-
tence and generate attribution scores for the tokens.
Below, we describe the methods used to produce
these attribution scores.

Leave-One-Out (LOO). We use LOO (Li et al.,
2016), a popular model-agnostic feature attribution
technique, to compute the attribution score for each
token xi in an input sentence X with respect to the
model’s prediction ŷ. Let w[CLS] be the final layer
representation of the “[CLS]” token for X . During
inference, the method processes the input through
ReLU, affine, and softmax layers to produce a prob-
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ability distribution over the outputs. For each token
xi, LOO measures the change in probability when
xi is excluded from the input X . Higher change
in probability indicates that the token xi is more
influential in the model’s prediction:

ℓ = softmax(affine(ReLU(w[CLS])))

ℓi = softmax(affine(ReLU(wi)))

∇i = ℓ− ℓi

where wi represents the final layer output of the
“[CLS]” token when the token xi is removed from
the input sequence X .

Integrated Gradients (IG). Sundararajan et al.
(2017) propose this technique for attributing a neu-
ral network’s output to its input features by com-
puting the integral of the gradients of the model’s
prediction with respect to the inputs along a path
from a baseline to the actual input. The attribution
for a feature xi is given by:

IGi = (xi − x0i ) ·
∫ 1

0

∂f(x0 + α · (x− x0))

∂xi
dα

where x0i is the baseline input and f is the model’s
prediction function.

In this work, IG is used to compute attribution
scores for each token xi

2 in X . IG provides scores
between −1 and 1 for each embedding dimension
of the token xi, where 1 and −1 represent maxi-
mum influence towards labels 1 (T) and 0 (O), and
scores near zero indicate minimal impact.

2.1 Data

We use the Monolingual German dataset from the
Multilingual Parallel Direct Europarl (MPDE) fea-
turing annotated paragraphs from the proceedings
of the European Parliament (Amponsah-Kaakyire
et al., 2021). The dataset includes both the orig-
inal texts and their translations. Each paragraph,
averaging 80 tokens, is labeled to indicate whether
it is an original or a translation. Since most NMT
systems operate on sentence level, we split each
paragraph into sentences, which we later use for
our work.

However, in MPDE, paragraphs of German
sources typically contain more sentences than their

2Token xi may refer to either a whole word or its subunits,
as the WordPiece tokenizer (Song et al., 2021) splits words
into subunits. To compute the attribution score at the word
level, we average the attributions of its subunits.

English translations.3 To address this imbalance,
we remove certain amount of German source sen-
tences, creating a training set with an equal number
of original and translated sentences (97,108 in the
training set and 20,744 in the test set).

To further perform evaluation of translation qual-
ity, we need a clear one-to-one correspondence be-
tween source sentence, human-translated sentence
and the automatically translated sentence. As men-
tioned above, not every paragraph of the MPDE
dataset has the same number of sentences in its
German source and in its English translation. We
have composed a subset of MPDE consisting only
of those sentences whose paragraphs have an equal
number of German and English sentences. This
subset contains 38,035 sentences.

Pre-processing. To ensure that the explanation
methods work efficiently, we tokenize and truecase
our data.4 Both are performed using Moses scripts
(Koehn et al., 2007).

2.2 Models

We report O/T classification and translation quality
results on a wide selection of some of the best-
performing models, both commercial and open-
source models:
• DeepL Translator: a state-of-the-art commer-

cial NMT system.5

• Google Translate: Likely the most widely used
commercial NMT system.6

• M2M-100-418M (Fan et al., 2020): A large mul-
tilingual NMT model trained on 2,200 translation
directions, enabling many-to-many translation
across 100 languages. We use the base version.

• MADLAD-400 (Kudugunta et al., 2023): A mul-
tilingual NMT model based on the T5 architec-
ture (Raffel et al., 2020b), with 3 billion parame-
ters, trained on 1 trillion tokens across 450 lan-
guages using publicly available data.

• NLLB-600M (Costa-jussà et al., 2022): It rep-
resents the current state-of-the-art NMT system,

3This is due to the fact that the translations of paragraphs
are not aligned sentence-wise. While the original paragraph
may have i sentences, one translation may have j sentences
and another k.

4As further we need, for example, to analyze lexical over-
laps, it is important that we do not miss out on words because
of punctuation or case

5https://www.deepl.com/en/translator (accessed on August
16, 2024)

6https://translate.google.com/?sl=de&tl=en&op=translate
(accessed on August 13, 2024)
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System O/T Classification Accuracy AEM
(%) COMET BLEU

HT 0.79
DeepL 0.86 0.85 34.85 ± 0.19
Google Translate 0.92 0.79 24.17 ± 0.16
M2M-100-418M 0.91 0.81 25.94 ± 0.16
MADLAD-400-MT 0.91 0.69 16.37 ± 0.18
NLLB-600M 0.83 0.79 27.35 ± 0.19
LLaMAX-3.1-8B-Alpaca 0.94 0.81 15.43 ± 0.13
TowerInstruct-7B-v0.2 0.83 0.84 33.35 ± 0.18
Aya-101-13B 0.86 0.83 25.35 ± 0.16
Gemma-7B 0.89 0.83 27.53± 0.19
Llama-3.1-IT-8B 0.90 0.82 26.91 ± 0.17

Table 1: Performance metrics for various systems including classification accuracy and automatic MT evaluation
metrics (COMET and BLEU). The highest scores are highlighted in bold.

scaling up to 200 languages. We experiment with
the distilled version with 600M parameters.
In addition to the NMT systems listed above, we

pick three well-known and high-performing open-
source LLMs and use them for prompt-based trans-
lation without any prior fine-tuning (see Appendix
A for the prompt templates):
• LLaMAX-3.1-8B-Alpaca (Lu et al., 2024) is

an open-source instruction-following language
model with 8 billion parameters. It is fine-tuned
from the LLaMA model (Taori et al., 2023) and
supports 102 languages through continual pre-
training, incorporating 52,000 Self-Instruct En-
glish instruction examples (Wang et al., 2023).

• Llama-3.1-IT-8B (Dubey et al., 2024): The
Meta Llama 3.1 collection includes multilingual
LLMs. This 8B parameter model is pretrained
and instruction-tuned for text generation, opti-
mized for multilingual dialogue.

• TowerInstruct-7B-v0.2 (Alves et al., 2024): A
language model based on LLaMA 2 (Touvron
et al., 2023), using a diverse dataset of 20 billion
tokens from monolingual sources in ten different
languages.

• Aya-101-13B (Üstün et al., 2024): A 13-billion-
parameter mT5 (Xue et al., 2021) multilingual
model trained on instructions in 101 languages,
exceeding the coverage of earlier open-source
models (Lai et al., 2023; Muennighoff et al.,
2022; Le Scao et al., 2023).

• Gemma-7B (Team et al., 2024b) is a lightweight
open-source LLM developed by Google Deep-
Mind. It has been instruction-tuned to respond to
prompts in a conversational manner.

3 Evaluation

3.1 O/T Classification
We follow Dutta Chowdhury et al. (2022) to per-
form binary classification between original and
translated (O and T) sentences. We use the XLM-
RoBERTa base model (Conneau et al., 2020) with a
softmax classifier applied to the [CLS] token of the
sentence embeddings. We freeze hyperparameters
and weights of the pre-trained encoder, and train
the classifier for 10 epochs on each sentence with
batch size of 16 and learning rate of 2× 10−5. All
experiments are performed using NVIDIA V100
or A100 GPUs.

Results. The linear O/T classifiers show high ac-
curacies (>80%) for all models (Table 1). We find
that the automatically translated sentences, for both
NMTs and LLMs, are always identified with higher
accuracy than the human-translated ones. This find-
ing corroborates the hypothesis that automatically
translated texts are more readily distinguishable in
classification tasks than those translated by humans
(Ilisei et al., 2010; Rubino et al., 2016; Pylypenko
et al., 2021).

3.2 Translation Quality
To assess translation quality, we utilise two auto-
matic evaluation metrics (AEM): BLEU (Papineni
et al., 2002) as implemented in SacreBLEU7 (Post,
2018) and COMET (Rei et al., 2022).8 BLEU re-
lies on word n-gram similarity, whereas COMET

7BLEU signature: nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.0.0

8Unbabel/wmt22-comet-da, see https://github.com/
Unbabel/COMET

https://github.com/Unbabel/COMET
https://github.com/Unbabel/COMET
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System LOO IG
top-1 top-3 top-5 top-1 top-3 top-5

HT 0.64 0.66 0.66 0.51 0.56 0.57
DeepL 0.60 0.73 0.72 0.53 0.61 0.71
Google Translate 0.78 0.70 0.76 0.50 0.50 0.83
M2M-100-418M 0.57 0.70 0.76 0.57 0.75 0.75
NLLB-600M 0.50 0.73 0.69 0.58 0.50 0.71
TowerInstruct-7B-v0.2 0.54 0.70 0.74 0.51 0.55 0.54
Aya-101-13B 0.53 0.69 0.76 0.53 0.72 0.68
Gemma-7B 0.54 0.65 0.63 0.55 0.55 0.53
Llama-3.1-IT-8B 0.50 0.73 0.76 0.51 0.64 0.65
Mean 0.58 0.70 0.72 0.53 0.60 0.66

Table 2: Performance of the sufficiency classifier across different ranks (top-1, top-3, top-5) using LOO and IG
methods for HT, NMT, and LLM systems. The highest scores for each method are highlighted in teal (LOO) and
gray (IG), with the highest scores boldfaced to highlight the strengths of each method.

is a semantic metric built upon the XLM-R archi-
tecture.

Results. Table 1 shows that across different mod-
els, COMET scores remain relatively stable, while
BLEU scores show greater fluctuation. DeepL
stands out as the top performer, achieving the
highest scores in both COMET (0.85) and BLEU
(34.85). TowerInstruct-7B-v0.2 also performs well,
particularly in COMET, reflecting high translation
quality. Two systems, LLaMAX-3.1-8B-Alpaca
and MADLAD-400-MT, exhibit poor translation
quality. The high number of translation errors
could skew the explainability results, focusing on
these mistakes rather than models’ intrinsic charac-
teristics. Therefore, we exclude these models for
further experiments. We perform a correlation anal-
ysis, and find no significant correlation between
translation quality and O/T classification accuracy.
See Appendix C for more details.

3.3 Do explanations capture sufficient
information?

Understanding the effectiveness of model predic-
tions often relies on the quality of explanations
derived from those models. In this context, an ex-
planation refers to the rationale behind a model’s
predictions, specifically identifying the input to-
kens (features) that most significantly influence the
classification outcome. We follow the approach
outlined by Xie et al. (2024) to evaluate the suffi-
ciency of these explanations, as defined by Jacovi
et al. (2018) and Yu et al. (2019). Sufficiency refers
to the average change in predicted class probability
when only the top k influential tokens are retained.

This metric assesses how well the top k attribu-
tions explain the model’s predictions, ultimately
determining whether these explanations faithfully
represent the model’s decision-making process.

Previous research (Amponsah-Kaakyire et al.,
2022) has shown that feature attribution including
IG can be used to identify input tokens that are
particularly important to O/T classification results
for original texts and human translations.

However, whether this holds true across differ-
ent types of translations, such as those generated
by large language models (LLMs) or neural ma-
chine translation systems (NMT), remains under-
explored. Bizzoni et al. (2020) investigated this
problem using PoS perplexity scores and syntac-
tic dependency lengths. More recently, Luo et al.
(2024) systematically investigate the differences in
the distribution of translation divergences between
HT and MT through a large-scale, fine-grained
comparative analysis, focusing on morphosyntactic
variations. In contrast, our approach investigates
lexical (words and PoS) differences by analysing
explanations from O/T classifiers.

Our goal is to identify the key features that set
apart translation artifacts produced by LLMs, NMT,
and HTs from the text originally authored in the
target language. To evaluate the sufficiency of our
methods—specifically Leave-One-Out (LOO) and
IG—we separately extract the top k tokens with the
highest attribution scores for each sentence in the
training set (see Section 2.1). We then construct
datasets with sentences consisting only of these
top k tokens while maintaining the same labels.
O/T classifiers are then trained on these datasets,
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Figure 1: Level of intersection between top-5 most im-
portant explanations across different translation meth-
ods using LOO method.

where k = {1, 3, 5}, and we subsequently assess
the classifiers’ accuracy on the test set (Table 2) 9.

3.3.1 Sufficiency

If we can maintain high accuracy of O/T classifier
using only the k tokens with the highest attribution
scores, this indicates that the explainability meth-
ods (LOO and IG) work as intended, allowing us to
efficiently identify important differences between
translations and originally authored sentences in
the target language.

Results. Table 2 shows that high accuracy for
O/T is consistently maintained for the top k tokens
with the highest attribution scores, indicating that
the explainability methods (LOO and IG) function
as intended. On average, as the number of tokens
increases, we see an improvement in the sufficiency
scores, indicating that the features we are extracting
are indeed important.

Moreover, LOO is able to achieve much higher
sufficiency score on top-1 tokens from certain
model outputs as compared to IG, suggesting that
LOO may be more effective at pinpointing the most
critical token for classification. The reason for
that might be that Leave-One-Out (LOO) directly
removes each word and measures the impact on
model prediction, giving a more precise attribu-
tion score. In contrast, Integrated Gradients (IG)
require pooling attributions across the dimensions
of an embedding and averaging attributions across
subwords when a word is split into pieces, which

9We modified the train set for the sufficiency experiment
but left the test set unchanged to ensure fair evaluation.

Figure 2: Level of intersection between top-5 most im-
portant explanations across different translation meth-
ods with IG.

may provide better performance in context, but
lower it when focusing on a single word.

The LOO method achieves its highest top-1 suf-
ficiency score of 0.78 across all models for Google
Translate, underscoring its potential effectiveness
in identifying essential tokens. In contrast, the IG
method records its highest top-5 sufficiency score
of 0.83 for the same translation system, showcasing
its strength in capturing significant features across
a broader range of tokens.

4 Feature Analysis of LLM, NMT, and
Human Translation

4.1 Feature Overlap Analysis

We conduct an intersection analysis of linguistic
features (input tokens), focusing specifically on
sentences for which we can establish a one-to-one
correspondence between outputs of different trans-
lation systems. For these sentences, we apply both
LOO and IG using previously trained O/T classi-
fiers for HT, NMT, and LLM datasets. This process
enables us to compute attribution scores for indi-
vidual tokens within each sentence. Using these
scores, we extract the top-k most important tokens
(k = 1, 3, 5) for each sentence.

Following this, we calculate the intersection be-
tween the LOO and IG results for different trans-
lation systems using the Jaccard Similarity Coeffi-
cient, which represents the percentage of common
tokens and takes a value from 0 to 1. A high in-
tersection among the top-k tokens indicates robust
features (tokens) that are consistently identified as
important across different translation models.
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Conversely, if the intersection between systems
and/or human translations is low, it indicates that
the translations exhibit different features. Figure 1
presents the pairwise Jaccard values for the top-5
features derived from the Leave-One-Out (LOO)
method. Each cell quantifies the degree of overlap
between the top features of two different translation
systems, with darker shades representing higher
overlaps. Notably, the highest intersection is ob-
served between TowerInstruct-7B-v0.2 and DeepL,
with an overlap of 0.25, suggesting a strong simi-
larity in the features identified for these models.

Another substantial intersection occurs between
Gemma-7B and M2M-100-418M at 0.24, indicat-
ing considerable alignment in their outputs. In
contrast, human-generated content shows relatively
lower intersections with machine models, such
as 0.16 with TowerInstruct-7B-v0.2 and DeepL
and 0.13 with M2M-100-418M, underscoring the
unique nature of human translations compared to
machine-generated translations.

Similarly, Figure 2 shows the pairwise Jaccard
values for the top-5 features (tokens) obtained us-
ing Integrated Gradients (IG). The most notable
overlap is between Google Translate and DeepL,
with a significant intersection of 0.28, demon-
strating a strong similarity in their feature selec-
tions. A notable intersection of 0.27 is observed
between M2M-100-418M and both Aya-101-13B
and Google Translate, suggesting that these models
yield quite similar results. The lower intersection of
0.11 between TowerInstruct-7B-v0.2 and Aya-101-
13B emphasizes the differences in their outputs.
The intersection with human translation identified
by IG is notably highest for TowerInstruct-7B-v0.2,
at a value of 0.16.

The combined results suggest that while certain
LLMs, like Aya-101-13B and TowerInstruct-7B-
v0.2, closely align with NMT models such as M2M-
100-418M and DeepL in their feature selection,
others retain unique classification features. Further-
more, there are notable differences in how closely
these models align with human translations, with
TowerInstruct-7B-v0.2 demonstrating the highest
similarity to HT as shown by both LOO and IG.

4.2 Feature Frequency Analysis
We examine the frequency of different Part of
Speech (PoS) tags across translation systems, fo-
cusing on the top k features flagged by LOO/IG
for each sentence. For each system, we group sen-

tences – both human and machine translations –
into predefined sentence length bins. These bins
are divided into ranges (e.g., 0-10, 10-15, 15-20
words), and for each, we calculate and normalize
the frequency of the identified features based on the
total number of sentences in that bin. This helps
us compare trends in PoS distribution as sentence
length increases. We are examining trends for the
9 most common PoS.

To ensure the reliability of our measurements,
we account for the margin of error (standard de-
viation) obtained through bootstrapping by sub-
sampling each bin 1,000 times while maintaining
the PoS distribution within each sentence. In the
graphs we show the standard deviation with shad-
ing. Figure 3 illustrates variations in PoS distri-
bution, showing nine subplots for adverbs (ADV),
verbs (VERB), determiners (DET), auxiliary verbs
(AUX), nouns (NOUN), pronouns (PRON), adjec-
tives (ADJ), adpositions (ADP), and punctuations
(PUNCT).

For ADV, most models—both NMT and
LLM—use fewer adverbs than HT. However,
Llama-3.1-8B demonstrates frequencies that are
closer to HT as sentence length increases, while
TowerInstruct-7B-v0.2 diverges with longer sen-
tences. NMT models like M2M and Google Trans-
late underproduce ADV compared to HT, whereas
DeepL aligns more closely with HT and tends to
overproduce ADV with longer sentences.

ADP use in HT increases with sentence length,
and most NMT and LLM models follow this
trend, although models like Google Translate show
slightly lower frequencies in longer sentences. Py-
lypenko et al. (2021) find that the relative frequen-
cies of ADV and ADP in PoS tagging are strong
indicators of translationese in HT.

For VERB, both HT and most NMT and LLM
models maintain a steady frequency, though the
models generally underproduce compared to the hu-
man translation trend. For DET, HT usage slightly
increases with sentence length, while all LLM and
NMT models, except DeepL, tend to use determin-
ers more frequently.

In the case of PRON, most models tend to align
with the human trend for shorter sentences. How-
ever, as sentence length increases, their frequen-
cies start to deviate from each other. NLLB-600M
demonstrates a substantially higher frequency than
human translations across all sentence lengths.

In ADJ usage, HT remains relatively stable,
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Figure 3: The frequency of the top PoS categories flagged by LOO across different sentence length bins. The x-axis
of each subplot represents sentence length, divided into ranges (0-10, 10-15, 15-20, etc.), and the y-axis shows PoS
frequency, indicating how often each PoS occurs in sentences of different lengths.

showing a slight decrease as sentence length in-
creases. All NMT and LLM models exhibit lower
adjective frequencies overall, with their trends be-
ing extremely similar across all sentence lengths.

For AUX, HT demonstrates a consistent de-
cline as sentence length increases. Most NMT
models follow this trend, except for NLLB-600M,
which shows significantly higher AUX usage.

Similarly, Llama-3.1-8B-Instruct exhibits slightly
higher AUX frequencies compared to HT. The fre-
quency of NOUN usage is maximal for sentences
of length 10-15 and then consistently decreases
for longer sentences. HT and most models seem
to follow this trend, except for two NMTs (M2M-
100 and Google Translate), which tend to over-
produce nouns in very long sentences. For HT
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and NMT/LLM, the frequency of PUNCT usage in
sentences of length 10-15 is lower than in shorter
sentences, although there is an increasing trend for
sentences longer than 15. Google Translate ex-
hibits notably higher PUNCT frequencies than all
other models and HT, although its usage declines
in very long sentences.

Overall, LLMs exhibit PoS patterns (for 6 out of
9 tags) that closely align with human translations,
whereas NMT models show greater deviations, par-
ticularly regarding PUNCT. NMT models tend to
underproduce ADV, and for some other parts of
speech (PoS) like ADP or PRON, they show signifi-
cant divergence. In contrast, LLMs exhibit stronger
agreement in trends and align more closely with
HT, although they still demonstrate some overuse
in short sentences. Both NMTs and LLMs un-
derproduce ADJ compared to HT, particularly in
longer sentences. LLMs better mimic human usage
in ADV and AUX frequencies, especially in longer
sentences. Appendix B displays the frequency plots
of the top PoS categories identified by Integrated
Gradients (IG) across various sentence-length bins.

5 Conclusion

In this work, we systematically explore the trans-
lation divergences between LLMs, NMTs, and hu-
man translations. Our key findings show distinct
differences in how these systems approach trans-
lation, despite advancements in LLMs that allow
them to produce high-quality outputs. We find that
while LLMs often exhibit translation patterns more
similar to human translations compared to tradi-
tional NMT models, they still diverge from orig-
inally authored text in the same language. Over-
all, we find that automatically translated sentences
from both NMTs and LLMs are consistently iden-
tified with higher accuracy in O/T classification
tasks than human-translated ones. This supports
the hypothesis that machine-translated texts are
more easily distinguishable from original texts than
those translated by humans (Rubino et al., 2016;
Pylypenko et al., 2021).

To better understand the distinctions between
translations produced by LLMs and NMTs com-
pared to human translations, we employ Leave-
One-Out and Integrated Gradients explanation
methods to extract and analyze lexical features
identified by translation classifiers. Our findings
indicate that even when using a sufficiency-based
approach, we can recover a significant amount of

O/T classification accuracy. This demonstrates that
these features are effective in distinguishing be-
tween automatic and human translations.

Further, our results indicate that sufficiency-
based approach is particularly effective at iden-
tifying single critical features, while Integrated
Gradients (IG) capture a broader range of impor-
tant features. Interestingly, we observe that certain
LLMs align closely with NMT systems in their fea-
ture selection, demonstrating similarities in their
approaches. However, human translations consis-
tently exhibit lower overlap with both LLM and
NMT outputs, particularly regarding crucial fea-
tures like punctuation and specific PoS.

Furthermore, our frequency analysis of PoS tags
reveals that LLMs align more closely with HT in
their usage, especially in terms of adverbs, and
auxiliary verbs, while NMT models tend to over-
produce specific tags in shorter sentences. This
suggests that LLMs, although not perfect, are mak-
ing strides in mimicking human translation pat-
terns. Our findings highlight the characteristics that
define the outputs of various translation systems.
However, despite advances in machine translation,
human translations continue to display distinctive
characteristics, particularly in their nuanced use of
linguistic features, making them less prone to the
artifacts seen in machine-generated texts.

Limitations

Limitations of Lexical Features. The results
presented in this study rely entirely on the lexi-
cal features derived from Leave-One-Out (LOO)
and Integrated Gradients (IG), which may fall short
of capturing the intricacies of translation quality.
Moreover, translation artifacts can arise at both
syntactic and semantic levels (Bizzoni et al., 2020;
Briakou and Carpuat, 2020), aspects that this re-
search does not address. This leaves an exploration
of these dimensions to future work.

Prompting Choice. Prompting has demonstrated
varying sensitivity to the choice of templates and
examples (Zhao et al., 2021). In machine transla-
tion (MT), prior studies have used different tem-
plates (Brown et al., 2020; Chowdhery et al., 2023;
Wei et al., 2021). In our work, we reevaluate these
templates to determine the optimal one. However,
the format and wording of the prompt significantly
influence how the LLM comprehends the task and
performs translation, potentially impacting our find-
ings, which we leave for future exploration.
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Stability of Model Outputs. Additionally, we
have assumed that the output of a specific model
would remain stable throughout the analysis. How-
ever, LLMs are frequently updated, which can lead
to changes in their writing style and coherence.
Such variations might cause explainability methods
to underperform, exacerbating the issues discussed
in this work.

Constraints of Sentence-Level Analysis. Most
NMT models utilized in this study function effec-
tively at the sentence level, necessitating that we
translate individual sentences for both NMTs and
LLMs to ensure consistency. Thus, our sentence-
based analysis with LLMs is also a limiting factor,
as it restricts our ability to capture broader contex-
tual nuances (Koneru et al., 2024). This would en-
tail expanding our analysis beyond sentence-level
assessments.
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A Prompts

LLaMAX-3.1-8B-Alpaca

Below is an instruction that describes a task, paired with an input that provides
further context.
Write a response that appropriately completes the request.
### Instruction: Translate the following sentences from {source} to {target}.
Input:
{input_sentence}
### Response:

TowerInstruct-7B-v0.2
Translate the following sentence into {target}.
{source}: {input_sentence}
{target}:

Aya-101-13B

Translate to {target}: {input_sentence}

LLaMA-3.1-IT-8B
Translate the following sentence from {source} to {target}:
{input_sentence}
{target}:

Gemma-7B
Translate this sentence from {source} to {target} without any comments:
{source}:
{input_sentence}
{target}:
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B

Figure 4: The frequency of the top PoS categories flagged by IG across different sentence length bins. The x-axis of
each subplot represents sentence length, divided into ranges (0-10, 10-15, 15-20, etc.), and the y-axis shows PoS
frequency, indicating how often each PoS occurs in sentences of different lengths.
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C Correlation Analysis

We calculate Spearman’s correlation to analyze the relationship between translation quality and O/T
classification accuracy, considering a significance level α = 0.05. We find Spearman’s correlation between
COMET and Accuracy to be −0.43 with p-value 0.28, and −0.63 with p-value 0.1 between BLEU and
Accuracy. Correlations are not statistically significant; therefore, given our data, there is no evidence to
support the notion that poorer translations are more easily classified as translated or non-translated texts.


