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Abstract
We introduce a benchmark, VISTRA, for
visually-situated translation of English text in
natural images to four target languages. We
describe the dataset construction and compo-
sition. We benchmark open-source and com-
mercial OCR and MT models on VISTRA, and
present both quantitative results and a taxon-
omy of common OCR error classes with their
effect on downstream MT. Finally, we assess
direct image-to-text translation with a multi-
modal LLM, and show that it is able in some
cases but not yet consistently to disambiguate
possible translations with visual context. We
show that this is an unsolved and challenging
task even for strong commercial models. We
hope that the creation and release of this bench-
mark which is the first of its kind for these
language pairs will encourage further research
in this direction.

1 Introduction

Visually-situated language concerns multimodal
settings where text and vision are intermixed, and
the meaning of words or phrases is directly influ-
enced by what is observable or referenced visually.
Vision-and-language research has most commonly
focused on tasks where images and text can be pro-
cessed as distinct channels within a joint model,
such as question answering or image captioning.
However, settings where text is embedded in an
image are ubiquitous, ranging from text on street
signs, to chryrons on news broadcasts, language
embedded in figures or social media images, or
non-digitized text sources.

Translating visually-situated text is a practical
application of recent pixel-based translation mod-
els (Salesky et al., 2021), with new challenges due
to the varied text styles, backgrounds, and complex
layouts found in natural images. This task com-
bines a series of traditionally separate steps includ-
ing text detection, optical character recognition,
semantic grouping, and finally machine translation.

Figure 1: Visual context can resolve translation ambigu-
ity. Here, translating ‘EXIT’ from English to German is
ambiguous without further information about the mode
of travel (on foot or by car), which the visual context in
the image provides.

Not only can errors propagate between steps, as
generated mistakes cause mismatches in vocabu-
lary and distribution from those observed in train-
ing and reduce downstream task performance, but
processing each step in isolation separates recog-
nized text from visual context which may be nec-
essary to produce a correct situational translation.
For example, as illustrated in Figure 1, the English
word ‘Exit’ can be translated to German as either
‘Ausfahrt’ or ‘Ausgang’; without appropriate con-
text, which may not be present in the text alone, the
generated translation would be a statistical guess.

We present a publicly-released benchmark, VIS-
TRA, for visually-situated translation (VST) of text
contained in natural images. With VISTRA, we
benchmark the performance of popular OCR mod-
els and conduct an error analysis of text recognition
errors. We analyze which recognition errors prop-
agate to and most significantly affect downstream
translation to four target languages with varied lev-
els of contextual dependence on the image. We also
compare direct visually-situated translation with
multimodal LLMs, and discuss whether access to
visual context improves visually-situated transla-
tion with current models. Finally, given our find-
ings, we present directions for future work and con-
nections to recent pixel-based translation models.
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2 Constructing the VISTRA benchmark

VISTRA comprises 772 natural images containing
English text, with aligned translations to four target
languages (German, Spanish, Russian, and Man-
darin Chinese) with varying levels of visual con-
textual dependence. Each image is annotated with
its height and width, a categorical label, its seman-
tically grouped English transcript, translations to
the four target languages aligned at the level of the
semantic groups in the transcript, and, word-level
bounding boxes specified by corner with coordi-
nates rescaled from 0-1, matched to the aligned
word in the transcript. On average, each image
contains 11.2 words and 2.4 transcript groups, for
a total of 1840 parallel segments in the benchmark
with an average length of 4.7 words. An annotated
data sample is shown in Figure 2.1

To the best of our knowledge, only one prior
publicly-released data exists for in-image text trans-
lation from natural images (OCRMT30K: Lan
et al., 2023), which contains 30k images with Chi-
nese text manually translated to English. In the
absence of datasets for this task, prior work on in-
image machine translation has primarily syntheti-
cally rendered MT corpora for this task (Mansimov
et al., 2020; Tian et al., 2023; Niu et al., 2024; Lan
et al., 2024) or addressed PDF document transla-
tion (Ignat et al., 2022; Hsu et al., 2024), discussed
further in Section 4. While these settings typically
use uniform text styles and sizes and contain a sin-
gle semantic unit per image, natural images are
contain text with multiple sizes and styles, mul-
tiple text groups in complex layouts, and varied
image backgrounds, all of which introduce addi-
tional challenges. Our task also differs from what
is commonly called multimodal translation in that
our setting text is embedded into the image context,
as opposed to a text caption to be translated with
the aid of a relevant image.

The VISTRA benchmark is released under a per-
missive CC BY-SA license for further scientific
research and commercial use.2

2.1 Criteria for image selection
The dataset is primarily constructed of newly-
captured photos in order that they not be under
copyright or contained in LLM training data.3 We
1We omit the full list of bounding box coordinates in Figure 2
for readability.

2https://vistra-benchmark.github.io
3Though these specific images will not have been observed in
training, we cannot guarantee that the same or similar signs

additionally include a small challenge set of pub-
lic domain images from social media where text
has been embedded in an image and is no longer
accessible without OCR. Within this benchmark,
we focus only on printed text, not handwritten. We
describe the detailed criteria for image selection
below.

1. Languages: Only images containing text in a
single language (English) are included.

2. Maximizing translatable text: Images were
chosen to maximize text which would be
translated rather than transliterated or copied
across languages, i.e. maximizing descriptive
or instructive text and minimizing numerals
and named entities. Where these are present,
they may not constitute the majority of the
text.

3. Framing with sufficient context: Sufficient
context (visual or textual) must be present to
reduce translation ambiguity. If, as in Figure 1,
correct translation would require knowledge
that the sign is by a road or a footpath, one of
these should be at least partly visible.

4. Length of text: We aim for a balance of text
lengths. While some traffic signs may have
only 1-2 words, if they are sufficiently fre-
quent that it is important for strong image
translation models to get correct, they have
been included; other images may include up
to 100 words.

5. Text style: Text may contain multiple fonts,
colors, and sizes within one image.

6. Layout and number of text groups: We in-
clude a balance of layout complexity, from
single-line horizontal layouts, to complex lay-
outs with angled text, or multiple adjacent
semantic groups which prove challenging for
line-level OCR.

7. Image dimensions and resolution: We col-
lect high-resolution photos, non-resized and
not retouched. Original dimensions may vary
based on camera and conditions, but at least
one dimension (length or width) must be
larger than 1024.

in other settings have not. Though we submitted opt-out
requests to exempt our data from being trained on before
submitting benchmark images to commercial LLMs in our
experiments, if subsequent researchers do not also do so,
benchmark images may be ingested as training data.

https://creativecommons.org/licenses/by-sa/4.0/
https://vistra-benchmark.github.io
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Figure 2: VISTRA data sample showing metadata, transcripts, and translations.

8. Clean conditions: The dataset reflects clean
conditions. We require that it is not challeng-
ing for a human reader to recognize contained
text. We exclude images where the text is chal-
lenging to read due to environmental condi-
tions (such as weather: rain, fog); blur; light-
ing conditions; occlusions (such as graffiti,
foliage).

9. Permissive use: All images are either photos
taken for the purposes of this benchmark or in
the public domain.

2.2 Text annotation and transcription
Text bounding boxes and transcripts were manually
post-edited from Google Cloud Vision OCR with
a custom interface. The annotation interface is
shown in Figure 6 in Appendix A.

Bounding boxes. Text bounding boxes are spec-
ified at the word level. In contrast to line-level an-
notations, using word-level bounding boxes more
flexibly allows for complex layouts where unre-
lated text may appear side-by-side in an image (for
example, adjacent signs), but should not be grouped
and translated together. Bounding boxes are rect-
angular (90◦ corners) with all four vertices spec-
ified, which allows angled rotation to match text
directionality. Bounding boxes were post-edited to
ensure all text was detected, no text was cropped,
and hallucinated text boxes were removed.

Transcript. All (and only) text which was
clearly human-readable with images resized to a
maximum height and width of 1024px was tran-
scribed. In the final transcripts, case and punctua-
tion are matched as closely as possible to what is
present in the original image. Non-textual symbols
which may be present on some directional signs

(for example, or ) were not transcribed or
annotated.

Semantic grouping. Finally, we semantically
group word-level text boxes. This creates text units
with necessary context for translation, and sepa-
rates for example different street signs which ap-
pear in the same image into distinct units for down-
stream translation. Not all images contain full sen-
tences; therefore, our criteria were forming clause
or phrase-level groups which appear together in the
image and should be translated together. This step
may be ambiguous, and so was annotated by one
person to ensure consistency across the dataset.

2.3 Translation

We contracted Centific4 to professionally translate
the text in each image from English to four target
languages: German, Spanish, Russian, and Man-
darin Chinese. This set of languages covers multi-
ple language families and scripts, and varied depen-
dence on visual context. Annotators were paid a
competitive market rate. Each image was translated
by an individual linguist and a random sample of
10% of the image translations were checked by a
second linguist.

All translations were performed from scratch
in OneForma, with access to both the original im-
age and transcript. The translation instructions and
annotation interface are shown in Figure 7 in Ap-
pendix A. Translations are aligned one-to-one with
the semantic groups in the transcript. We do not
ask annotators to match case and punctuation in
the source language, which may be unnatural for
the target language, but rather localize these for the
target language.
4https://www.centific.com

https://www.centific.com
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OCR ReturnsModel OCR MT VST Release level bboxes? Multilingual

PaddleOCR ✓ OPEN-SOURCE line|word yes
TesseractOCR ✓ OPEN-SOURCE word yes
Google Cloud Vision ✓ COMMERCIAL word yes
mBART ✓ OPEN-SOURCE — — ✓
Google Translate ✓ COMMERCIAL — —
GPT-4o ✓ ✓ ✓ COMMERCIAL unknown no ✓

Table 1: Models benchmarked for visually-situated translated (cascaded and direct).

Annotators were additionally asked whether the
visual context in the image affected the resulting
translation, as a binary question. Whether a trans-
lation would be ambiguous without the image can
vary by target language, as exemplified by ‘Exit’ in
Figure 1 which would be ambiguous in German but
not in Spanish. 99.7% of images were marked as
requiring image context for translation for at least
one translation direction, with the following break-
down by target language: German 99%, Chinese
96%, Spanish 54%, Russian 6%.

3 Benchmarking visually-situated
translation

We benchmark existing models for OCR and VST
using the new VISTRA dataset, and conduct an
error analysis of common OCR types and their
effect on downstream translation. This type of
error analysis does not exist in previous work; we
show that our new benchmark both illustrates these
types of errors and facilitates analysis of this type.

3.1 Models evaluated

We compare a variety of widely-used open-source,
open-weight, and commercial models to give a rep-
resentative view of the capabilities of current mod-
els for this task, and specifically, provide baseline
performance on the VISTRA benchmark. We list
all evaluated models with relevant characteristics
in Table 1.

3.1.1 OCR
Paddle-OCR5 (PP-OCR: Du et al., 2020) is becom-
ing one of the most commonly used open-source
tools for OCR in English and Chinese (Lan et al.,
2023; Yang et al., 2023, inter alia), due to its ease
of use and free public release. PP-OCRv4 uses

5https://paddlepaddle.github.io/PaddleOCR

Transformer models, trained per-language for En-
glish and Chinese. It produces word-level bound-
ing boxes within detected lines. Tesseract-OCR6

(Smith, 2007) is the longest-standing community-
developed open-source toolkit for OCR. Tesseract-
4 uses LSTM models, trained per-language. We ad-
ditionally benchmark Google Cloud Vision OCR7

(Popat et al., 2017; Ingle et al., 2019) to compare
strong commercial performance.

3.1.2 MT
We compare both an open-source machine transla-
tion model, mBART-50 (Liu et al., 2020), which
is trained primarily on clean, well-formed text, and
a commercial machine translation model, Google
Translate, as an upper-bound on expected perfor-
mance with greater expected robustness to noise.

3.1.3 Multimodal LLMs
Multimodal multilingual large language models
which have been explicitly trained on both vision
and language provide an opportunity to compare
direct translation from an image containing English
to text in a target language. By directly translating
from an image with access to the full image con-
text (as opposed to only the cropped region within
bounding boxes from a text detection stage), mul-
timodal models have the potential to be able to re-
solve ambiguity in translation. Here we benchmark
the performance of GPT-4o, which was the top-
performing multimodal model on a recent OCR-
centric LLM evaluation (OCRBench: Liu et al.,
2023), by prompting the model to directly translate
text contained in images without intermediate steps.
We also evaluate OCR only and machine transla-
tion only with this model in order to contextualize
direct multimodal translation results.

6https://github.com/tesseract-ocr/tesseract
7https://cloud.google.com/vision

https://paddlepaddle.github.io/PaddleOCR
https://github.com/tesseract-ocr/tesseract
https://cloud.google.com/vision
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Class Description

I Undetected text: missing text and
bounding boxes

II Text hallucination: text detected where
no text present

III Bounding box misplaced: text clipped,
cropping would affect recognition

IV Grouping error: text from different
groups intermixed in output text

V Punctuation error
VI Spacing error
VII Character-level substitution
VIII Word-level substitution

Table 2: OCR error taxonomy covering text detection
(I-III) and recognition (IV-VIII) errors.

3.2 OCR performance and error taxonomy

We measure OCR performance with two automatic
metrics: character error rate (CER) and translation
error rate (TER) (Snover et al., 2006).8 CER re-
flects the minimum number of single-character ed-
its (insertions, deletions, or substitutions) required
to change a string into the reference. TER is also
an edit-distance metric which aims to capture the
post-editing effort required to change a string into
the reference. While OCR is typically evaluated
case-insensitive with punctuation removed, with
downstream MT in mind we calculate both metrics
case-sensitive with punctuation.

While in e.g., speech recognition there may be
one correct ordering of the output, in a 2D image,
there is not necessarily only one correct order for
recognized text. To facilitate scoring different text
groupings across models, which would otherwise
require re-alignment, we concatenate groups before
applying automatic metrics. Where CER would
recognize reorderings between the hypothesis and
reference as several character edits, TER allows
shifts of contiguous spans as a single operation,
and therefore penalizes reordering less. As shown
in Figure 8d, different orderings due to line vs.
word level text recognition may still be errors and
significantly impact downstream translation, which
is why we use these two metrics together.

In addition to aggregate quantitative metrics, we
create an error taxonomy of the different classes
of OCR errors we observe across different models.
8We calculate TER with SacreBleu (Post, 2018),
case_sensitive=True, no_punct=False, normalized=False.

Model CER↓ TER↓ Sub. Del. Ins.

Paddle-OCR 13.0 21.5 963 2824 2851
Google OCR 18.0 32.0 186 381 8496
GPT-4o 23.8 36.0 1132 1277 9728
Tesseract-OCR 124.0 134.3 9597 37081 16477

Table 3: OCR results on the VISTRA benchmark.

Figure 3: Proportion of OCR error classes by model.

The eight OCR error classes are listed in Table 2
and describe errors in each step of the pipeline,
from text detection (text recall, text hallucinations
where non-text objects are recognized as text, or
bounding box placement errors which may affect
downstream processing using only these regions)
to recognition and generation (over and under gen-
eration of punctuation, spaces, and character- and
word-level substitutions).

We provide an illustrative example for each OCR
error class observed with our evaluated models on
the VISTRA benchmark in Figure 8 in Appendix B.
We hypothesize that differences in model design
affect the proportion of each type of error, and
that different error categories are likely to affect
downstream translation in different ways, as we
investigate in Section 3.3.

OCR performance for our 4 compared models
are shown in Table 3. We observe that somewhat
surprisingly, the open-source Paddle-OCR model is
the highest performing on both the CER and TER
metrics. While Google OCR has significantly fewer
substitutions and deletions, it has a much higher
insertion rate; here, this covers both more ‘benign’
insertions like whitespace, and text hallucinations
as illustrated in Figure 8b, where background pat-
terns are recognized as text characters.9 GPT-4o
performs slightly worse than both models on all
metrics. Tesseract, on the other hand, significantly
underperforms expectations set by past work (e.g.,

9It may be worth noting that where such hallucinations fre-
quently occur as consecutive spans, and so can be signifi-
cantly easier to post edit than the quantitative metrics reflect.



1172

(a) A grouping error causes each word to be translated indi-
vidually, resulting in agreement errors (Apple Translate).

(b) Inserted punctuation breaks up the text sequence, resulting
in translation errors despite correctly recognized text (mBART).

Figure 4: Qualitative examples of OCR errors which propagate to downstream MT.

Ignat et al., 2022). We hypothesize this may be
because it is primarily trained on documents, rather
than images with natural backgrounds; the mis-
match to varied background colors and additional
visual context, though the majority of our images
contain printed text with relatively uniform back-
grounds, appears to interfere with recognition and
lead to insertions as seen in Figure 4b.

To see to what degree models vary in the type of
errors they make, which we hypothesize are likely
to affect downstream MT to different degrees, we
manually annotate the error classes observed in
model outputs for a random sample of 100 images.
Figure 3 shows the proportion of outputs contain-
ing each error class from Table 2 for each of our
four models. For the strongest three models, the
most frequent error type is text hallucination, where
text is detected where no text was present. These
three models have just one or no examples of recall
errors in our sample. On the other hand, Tesseract-
OCR fails to detect some proportion of text in the
majority of examples and any text at all in 44%,
both resulting in low performance and artificially
reducing the rates of other error types.

Between Paddle and Google OCR, this analysis
presents a slightly different view to the quantita-
tive results above alone. Both models have similar
distributions of their most frequent errors. While
Paddle has a lower CER, its output has more var-
ied types of errors. Google OCR error types are
more consistent and occur across fewer classes, but
where they are present, there are typically multiple
errors, which lowers CER and TER further.

For GPT-4o, hallucinations often result in signif-
icant additions of punctuation as visualized for ex-
ample in Figure 8e, resulting in more than one class

of error. GPT-4o does not return bounding boxes
for detected text. However, it appears to often
generate text with additional whitespace and punc-
tuation to offset different text groups, which are
reflected in both these error classes.10 We do not
observe significant differences in word-level sub-
stitutions or text hallucinations with larger and/or
stronger decoder models.

3.3 How do OCR errors affect downstream
MT?

Here we assess the effect of OCR errors on down-
stream MT in cascaded models. We do not perform
normalization or postprocessing between OCR and
MT, except to concatenate semantic groups. We
evaluate translation with three automatic metrics:
BLEU11 (Papineni et al., 2002) and chrF (Popović,
2015), both as computed by SacreBLEU (Post,
2018), and COMET (Rei et al., 2020).12

This is a challenging task for all models. Fig-
ure 4 shows two illustrative examples where OCR
errors interfere with downstream translation, de-
spite correctly recognized text. Table 4 shows
translation performance for both cascaded OCR
and MT models and direct translation with a multi-
modal LLM for the four target languages in VIS-
TRA. Open-source models have weak performance
across all target languages and metrics. Com-
mercial MT appears more robust to OCR perfor-
mance in general, with consistently stronger re-
sults across all metrics and relatively similar per-
formance across the three strongest OCR models.

10We were not able to reduce this behavior consistently via
prompting.

11We omit BLEU when translating into Chinese without word
segmentation.

12wmt22-comet-da



1173

CASCADED DIRECT

mBART Google Translate GPT-4o

OCR Model chrF BLEU COMET chrF BLEU COMET chrF BLEU COMET

G
er

m
an

Tesseract-OCR 2.3 0.1 28.8 3.5 0.1 30.4 — — —
Paddle-OCR 26.8 9.0 46.1 36.0 16.7 57.0 — — —
GPT-4o OCR 28.1 6.9 48.0 36.4 13.2 58.2 — — —
Google-OCR 31.1 9.1 47.3 37.4 14.9 55.3 — — —
None — — — — — — 36.9 9.1 60.1

Sp
an

is
h

Tesseract-OCR 2.4 0.1 30.1 3.6 0.3 31.7 — — —
Paddle-OCR 17.5 3.1 44.4 60.8 33.8 75.1 — — —
GPT-4o OCR 23.3 4.2 50.4 60.8 24.6 75.0 — — —
Google-OCR 22.0 4.0 45.5 62.2 29.9 71.3 — — —
None — — — — — — 54.0 21.4 73.4

R
us

si
an

Tesseract-OCR 1.7 0.1 25.3 2.6 0.1 27.3 — — —
Paddle-OCR 13.0 5.8 42.4 46.5 20.0 73.0 — — —
Google-OCR 16.0 7.5 42.4 48.1 18.4 71.0 — — —
GPT-4o OCR 14.8 5.1 43.1 47.1 15.1 74.4 — — —
None — — — — — — 35.6 10.7 70.2

C
hi

ne
se

Tesseract-OCR 0.3 — 32.6 0.4 — 34.4 — — —
Paddle-OCR 18.2 — 62.0 40.2 — 82.0 — — —
GPT-4o OCR 19.7 — 63.1 40.1 — 82.5 — — —
Google-OCR 18.7 — 59.2 41.6 — 77.7 — — —
None — — — — — — 33.6 — 85.5

Table 4: Visually-situated translation results on the VISTRA benchmark. We compare both cascaded OCR and MT
as well as direct translation from images with a multimodal LLM. We note results with commercial OCR and/or
MT in gray, and direct translation of text in images with multimodal LLMs in blue.

Direct translation with a multimodal LLM per-
forms quite strongly, with consistently comparable
COMET scores to the strongest cascades for all
target languages, though weaker comparatively on
the lexical metrics chrF and BLEU; we look at this
more closely in Section 3.4.

The results in Table 4 show that CER and TER
alone are not sufficient indicators of performance.
Translation with mBART performs more highly
for Google and GPT-4o OCR than Paddle-OCR
despite their higher CER and TER, suggesting the
type of errors may have more significance than
edit distance alone. Undetected text (Class I) has
the most catastrophic effect on downstream MT.
For Tesseract-OCR, recall is simply too low for
non-trivial translation performance. Punctuation
and whitespace are insertional errors which are
detrimental to tokenization with mBART, increas-
ing fertility by approximately 3× and resulting in
input sequences which approach character level.

We hypothesize that these classes of errors may
be normalized in preprocessing by the commercial
MT system as they have less effect; of the sample
set annotated as having these errors, segment-level
chrF is 2× higher with the commercial model than
mBART, which is a larger margin than observed
overall (1.6×). Text hallucinations (Class II)
are more difficult to remove with post-processing,
though here are typically character-level rather than
insertions of valid words. Character- and word-
level substitutions (Classes VII and VIII) were
stated to have more detrimental effect on transla-
tion for OCR’ed documents in Ignat et al. (2022)
than insertions or deletions, but that is not the trend
we observe here. On our type of data, natural im-
ages with complex backgrounds, we observe sig-
nificantly more insertions per example than substi-
tutions; while for example punctuation insertions
(Class V) occur for a similar number of examples
as character-level substitutions (Class VII) for
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Figure 5: On this example from VISTRA, in a model cascade when translating with access to OCR output only,
GPT-4o translates ‘Exit’ as ‘Ausgang,’ while when translating directly from the image with access to the visual
context, GPT-4o correctly translates ‘Exit’ as ‘Ausfahrt.’

the GPT-4o OCR model in our annotated set, there
are nearly 10× more insertions than substitutions
in each example. When word-level substitutions
occurred, they occurred at most twice per image,
which both MT models were more easily able to
recover from using context.

We do not observe downstream MT errors due to
bounding box placement (Class III) in our sam-
ple. We note such errors may be more significant
for models which process only the cropped region
within bounding boxes, as in the example in Fig-
ure 8c an overly tight bounding box would cause
the g to look like an a when cropped. This would
be an important consideration if adapting recent
visual text-based translation approaches for text
in natural images (Salesky et al., 2021), as these
models currently only process the region directly
surrounding text.

3.4 Can multimodal models resolve contextual
ambiguity?

Multimodal LLMs have access to both textual infor-
mation contained in an image, as well as the visual
context it is situated in. Cascaded OCR and MT,
however, discards the visual information at transla-
tion time. Are LLMs able to use the broader visual
context to resolve otherwise ambiguous transla-
tions?

It can be challenging to assess the degree to
which multimodal models rely on different modal-
ities for their predictions (Hessel and Lee, 2020),
particularly for closed models without access to
relative weights or the training data distribution for
statistical priors. Here though direct translation
with a multimodal LLM performs non-trivially, we
still observe a performance gap to the same LLM

performing text translation from the reference tran-
scripts without access to visual information: for the
English→German language pair for example, 41.0
chrF and 18.8 BLEU vs. 36.9 chrF and 9.1 BLEU.
Directly comparing quantitative results is not a per-
fect reflection of the task, because each model may
get ambiguous examples wrong for different rea-
sons. However, within the VISTRA test set we do
observe examples where ambiguous source nouns
are generated as only one possible translation with
text input, but multiple senses with visual input. In
our running example, 14 images in the benchmark
contain the English word ‘Exit’; in a model cascade
when translating with access to text only, GPT-4o
translates all 14 instances as ‘Ausgang,’ while with
visual input only 5 instances are translated this way
and 4 use a variant of ‘Ausfahrt,’ as illustrated in
Figure 5. Particularly when used in conjunction
with models trained from scratch, this benchmark
may enable further analysis of attribution.

Cautionary note on evaluation metrics.
Learned metrics such as COMET score paraphrases
and synonyms highly, which typically leads to
higher correlations with human judgments. How-
ever, for this task precisely that property may make
them less reliable indicators of success. For ex-
ample, returning to the motivational example in
Figure 1, when translating the English sentence

‘The exit is over there,’ both possible German trans-
lations ‘Die Ausfahrt ist dort drüben’ and ‘Der Aus-
gang ist dort drüben’ are given identical COMET
scores (97.6) with either translation as the refer-
ence. Lexical metrics such as chrF and BLEU do
reflect a mismatch to the reference here, and may
be more reliable in this setting specifically for mea-
suring correct visually-situated translation. For this
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reason, and given the high proportion of examples
marked as contextually dependent in our bench-
mark (Section 2.3), the COMET scores in Table 4
should likely viewed more cautiously than for other
tasks. To properly evaluate contextually-dependent
translations with multimodal input using a learned
metric likely requires a new metric.

4 Related work

Translation of text in images has been strongly mo-
tivated by printed historical documents which re-
quire digitization (Afli and Way, 2016; Ignat et al.,
2022) and PDF document translation (Zhang et al.,
2023b; Hsu et al., 2024) with two column or more
complex text layouts. In the absence of publicly
available aligned and translated data sources, the
majority of work in this space has created synthetic
data for this task by rendering common machine
translation corpora from sources from WMT14
(Mansimov et al., 2020; Tian et al., 2023; Niu et al.,
2024; Lan et al., 2024). Ma et al. (2022) compared
cascaded and direct models for in-image text trans-
lation with synthetic, cropped subtitles, and street-
view images, but did not release their datasets. Lan
et al. (2023) extended this work, studying auxiliary
objectives for this task, and released a benchmark
extending 5 Chinese OCR datasets with natural im-
ages with translations for Chinese→English. Ignat
et al. (2022) perform similar analysis on the impact
of OCR CER on downstream MT performance with
the aim to see whether OCR’ed documents can be
utilized for data augmentation for MT training with
low-resource languages.

Similar to our task, multimodal translation uses
auxiliary visual context to improve text translation,
typically of image captions (Elliott et al., 2016;
Specia et al., 2016; Elliott and Kádár, 2017; Elliott
et al., 2017; Barrault et al., 2018; Li et al., 2022).
Recent work has adapted pretrained model compo-
nents into a single ViT model for this task (Gupta
et al., 2023). As in our setting, it is challenging
to assess the degree to which multimodal models
make use of visual context in addition to text rep-
resentations (Hessel and Lee, 2020); some studies
investigating the usage of visual input in multi-
modal MT have found that do so primarily in the
case of ambiguity or limited text input (Caglayan
et al., 2019; Raunak et al., 2019) or provide regu-
larization only (Wu et al., 2021).

Beyond machine translation, significant work
has studied problems in text-centric visual pro-

cessing such as document and table layout under-
standing through visual means (Long et al., 2022;
Alonso et al., 2024; Zheng et al., 2024), OCR-free
language understanding (Tanaka et al., 2021; Ye
et al., 2023), and modeling language in screen-
shots (Kim et al., 2022; Lee et al., 2023; Gao et al.,
2024). As multimodal LLMs become increasingly
strong, analyzing their capabilities and limitations
for text-rich image understanding (Zhang et al.,
2023a, 2024; Li et al., 2024) and OCR (Liu et al.,
2023) is a growing area. As we saw here, though
they are strong general purpose models, there can
remain a gap to task-specific models for complex
and specialized tasks.

5 Conclusions

We introduce a benchmark, VISTRA, for visually-
situated translation of English text in natural im-
ages to four target languages. We describe the
dataset construction and composition. We bench-
mark multiple commonly used OCR models on
VISTRA, both open-source and commercial, and
evaluate cascaded OCR and MT performance. We
present both quantitative result and create a tax-
onomy of common error classes, and investigate
their impact on downstream MT. Finally, we assess
direct image-to-text translation with a multimodal
LLM, and show that it is able in some cases but
not yet consistently to disambiguate possible trans-
lations with visual context. We show that this is
an unsolved and challenging task even for strong
commercial models. We hope that the creation
and release of our benchmark, which is the first of
its kind for these language pairs, will encourage
further research in this direction.

Limitations

Our dataset is limited in scale and language cov-
erage to English text, with images predominantly
taken in a single country (USA). The majority of
photos were taken by a single photographer, which
may lead to more consistent image quality and ap-
plication of inclusion criteria, but likely also limits
diversity through a locale bias to their surroundings.
Transcriptions were performed by 3 individuals,
and all checked by the same annotator for consis-
tency, while translations were professionally done
with a subset checked by a second annotator.
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A Annotation Interfaces

Figure 6: Text annotation interface for VISTRA benchmark.
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Figure 7: Translation annotation interface for VISTRA benchmark.
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B Examples of each OCR error class

Here we show an illustrative example of each OCR error class described in Table 2 from the VISTRA

benchmark, with the model which produced each output.

(a) CLASS I: Undetected text (b) CLASS II: Text hallucination

(c) CLASS III: Bounding box error (d) CLASS IV: Grouping error

Figure 8: Examples of each OCR error class from Table 2.
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(e) CLASS V: Punctuation error (f) CLASS VI: Spacing error

(g) CLASS VII: Character-level substitution (h) CLASS VIII: Word-level substitution

Figure 8: Examples of each OCR error class from Table 2 (cont.)


