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Abstract

Despite the fact that context is known to be
vital for resolving a range of translation am-
biguities, most traditional machine translation
systems continue to be trained and to operate
at the sentence level. A common explanation
is the lack of document-level annotations for
existing training data. This work investigates
whether having such annotations would be help-
ful for training traditional MT systems at scale.
We build large-scale, state-of-the-art contextual
MT systems into German, French, and Rus-
sian, fixing the datasets while comparing the
effect of sourcing contextual training samples
from both parallel and back-translated data. We
then evaluate these contextual models across a
range of contextual test sets from the literature,
where we find that (a) document annotations
from both mined parallel and back-translated
monolingual data are helpful, but that the best
contextual MT systems do not draw contextual
training samples from the parallel data. We also
make two points related to evaluation: (b) con-
trastive score-based metrics on challenge sets
are not discriminative; instead, models must
be tested directly on their ability to generate
correct outputs, and (c) standard corpus-level
metrics such as COMET work best in settings
that are dense in contextual phenomena.

1 Introduction

By nature of its sentence-based design, traditional
machine translation (MT) is unable to correctly
translate any sentence with extra-sentential depen-
dencies, such as pronouns in languages with gram-
matic gender, except by chance (Table 1). Despite
significant prior work on the topic (§ 2), and gen-
eral acknowledgment of the need to move on (Sen-
nrich, 2018), contextual translation has never man-
aged to overtake MT research, and sentence-level
systems continue to dominate. This “sentence-level
ceiling” leaves a gap between them and their in-
creasingly powerful LLM counterparts, and raises

English German

I lost my hat. Have you
seen it?

Ich verlor meinen Hut.
Hast du es gesehen?

Table 1: The sentence-level translation ceiling. Select-
ing the correct pronoun (ihn, masc.) requires context.

the question of whether this gap can be narrowed or
closed, if traditional MT systems could be trained
properly with context.

A common explanation for the lack of context in
MT has to do with the relative dearth of document-
level annotations that are available for mined paral-
lel and even monolingual data. At the same time, it
has long been understood (Venugopal et al., 2011)
and recently corroborated (Thompson et al., 2024)
that crawled bitext is rife with machine translation
output, which—though high quality at the sentence
level—may attenuate the contextual signal. We ex-
plore this central problem by building the first large-
scale, state-of-the-art translation systems trained
on data with complete document annotations. We
are able to do this because instead of public data,
we use a private, in-house dataset (§ 3) that we have
crawled ourselves. This crucially allows us to ex-
plore the effects of document annotations sourced
from both parallel and monolingual (backtranslated
data), together and in isolation, in order to quantify
their effects. We find that:

• It is best to source contextual training ex-
amples from backtranslated data only. We
find gains in contextual metrics from systems
trained with contextual signals from both par-
allel and backtranslated data. However, the
best systems source these samples from back-
translated data only.

• Generative evaluation is crucial. Con-
trastive metrics, where the task is to discrim-
inate good and bad translations using model
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scores, are often used to evaluate contextual
MT. We show that contextual systems that
are trained on mined parallel documents do
well on this task, but perform poorly when
asked to generate correct translations. Only
generative evaluation, which looks at whether
correct words were produced, distinguishes
good from bad contextual systems.

• Standard metrics are most useful on
discourse-dense datasets. Standard sentence-
level metrics like COMET are much more
discriminative between sentence- and contex-
tual systems when applied to datasets that are
dense in discourse phenomena.

Together, these results raise important considera-
tions for the construction and evaluation of contex-
tual translation systems.

2 Background and Related Work

The transition to neural architectures was a
paradigm enabler for document translation, since it
eliminated the Markov limitations of statistical MT
(Maruf et al., 2019). Much work has focused on
special architectures and input encodings. This in-
cludes cache models (Tu et al., 2018; Kuang et al.,
2018), hierarchical attention (Miculicich et al.,
2018), separately encoding context (Voita et al.,
2018; Zhang et al., 2018), allowing attention across
a batch of pseudo-documents (Wu et al., 2023), en-
coding sentence position (Bao et al., 2021; Lupo
et al., 2023), and sparse attention mechanisms (Guo
et al., 2019). A number of approaches work on base
systems outputs, such as post-editing with contex-
tual language models (Voita et al., 2019a) and using
contextual language models to rerank sentence-
level system output Yu et al. (2020). Junczys-
Dowmunt (2019) built one of the earliest contextual
systems to perform well at WMT. Sun et al. (2022)
also proposed to use standard transformer models,
testing small architectures with no backtranslated
data, and using a “multi-resolutional” training ap-
proach that creates overlapping documents. We
focus instead on standard architectures, judging
them to be sufficient at large enough sizes.

The lack of document-annotated parallel data is
a longstanding problem. Datasets with document
annotations are relatively small and specialized:
they include OpenSubtitles (Lison and Tiedemann,
2016), WIT3 (Cettolo et al., 2012), News Com-
mentary, and Europarl (Koehn, 2005). Liu and

Zhang (2020) provide a nice survey, and release a
small amount of government-crawled new data for
Chinese–Portuguese. Very recently, document an-
notations on Paracrawl data have become available
Pal et al. (2024); Wicks et al. (2024). These annota-
tions are available for only a relatively small subset
of the data, however; even so, their results corrobo-
rate what we find here. (2024, Table 2) see drops
in performance from systems trained with their par-
allel data annotations, unless the gold target con-
text is provided; (2024) see small but consistent
gains when the parallel data has been sufficiently
filtered. The Conference on Machine Translation
(WMT) began releasing limited document-level
data for DE-EN and CS-EN in 2019 (Barrault et al.,
2019). This limitation has forced researchers to
get creative. Voita et al. (2019b) built a monolin-
gual post-editing system that took the output of
a baseline system and used it for document-level
“repair”. Sugiyama and Yoshinaga (2019) also used
target-side data for backtranslation, evaluating in
small-data settings with BLEU and contrastive met-
rics. Our work is unique in that we have com-
plete document annotations on very large web-
crawled datasets, and shows that these annotations
on parallel data, as a whole, are not as useful.

Contextual metrics work has been important.
PROTEST (Guillou and Hardmeier, 2016) used
hand-designed pronoun test cases and also evalu-
ated generatively. Many special test sets have been
developed isolating important contextual phenom-
ena and largely evaluating discriminatively (more
in § 4). Läubli et al. (2018) provided early evidence
that document-level metrics would be helpful. Sev-
eral document-level metrics have been proposed,
including BlonDe (Jiang et al., 2022), which com-
pares automatically-identified phenomena in the
output to those in a reference, and Doc-COMET
(Vernikos et al., 2022), which incorporates con-
textual sentence representations. Both metrics are
interesting but await deeper evaluation and we did
not explore them in this paper. Vamvas and Sen-
nrich (2021) have also noted the problem with the
disconnect between contrastive evaluation and gen-
erative ability for machine translation. Both Fer-
nandes et al. (2023) and Wicks and Post (2023)
developed rules to identify contextually-dependent
sentences. In this work, we show that datasets
dense in contextual phenomena are important
for evaluating contextual ability, and that dis-
criminative contextual evaluation is of limited
use.



1127

3 The data challenge

Large publicly-available parallel datasets do not
have document annotations. While the Conference
on Machine Translation (WMT) has made over-
tures in this direction,1 including ensuring that test
data is source-language-natural and contains docu-
ment information, parallel and monolingual data is
limited to a small subset of all data2 for which such
information is easily retained. This is also true of
recent work extracting document annotations from
Paracrawl (Pal et al., 2024; Wicks et al., 2024).

We wish to experiment with and compare an-
notations sourced from both parallel and back-
translated monolingual datasets. We therefore
turn instead to a state-of-the-art, large collection
of in-house data. We work with three language
pairs: English→German, English→French, and
English→Russian, which were selected because
of the availability of good contextual evaluation
data in each of them (§ 4). Our data comprises the
following sources (Table 2):

• Monolingual data, crawled from expected-
native sites: news (10%), data linked from
the Open Directory Project3 (40%), filtered
webcrawl (40%), and Wikipedia and its out-
links (10%).

• Crawled parallel web data (similar to
ParaCrawl)

• CCMatrix parallel data (Schwenk et al.,
2021b), which has no document information.

Datasets have been filtered using bicleaner
(Ramírez-Sánchez et al., 2020), with additional
boilerplate and document deduplication.

Although the dataset is private, there is noth-
ing in it that would surprise any researcher; the
data was crawled from the web using standard tech-
niques. The parallel data sources include a rough
equivalent of ParaCrawl (Bañón et al., 2020) and
also CCMatrix (Schwenk et al., 2021b). The mono-
lingual data sources focus on sites where we expect
data to have been written natively.

We emphasize that experiments at the scale pre-
sented in this paper are only possible with our

1statmt.org
2Parallel: europarl, news-commentary, CzEng, and Rapid;

Monolingual: news-crawl (en, de and cs), europarl, and news-
commentary. Source: http://www2.statmt.org/wmt23/
translation-task.html

3https://odp.org

private dataset, since document annotations are
only available for small-data training settings like
the TED talks data (Cettolo et al., 2012) used by
IWSLT.4 In a nod to the importance of repeatable
work, we include results on the subset of our exper-
iments that are possible on English–German public
data and show that they corroborate corresponding
results on private data (Section 7.6).

4 Contextual evaluation

A basic hurdle in the path to contextual transla-
tion is the difficulty of evaluation. We expect that
contextual systems will produce improved transla-
tions of discourse-level phenomena, however, the
frequency of these phenomena in standard corpora
is not known, and we expect them to be relatively
rare. This paper includes three types of evaluation.

4.1 Corpus-level metrics

The conventional way to test system performance is
with standard metrics such as chrF (Popović, 2015)
or COMET (Rei et al., 2020), which accumulate
sentence-level scores to compute a single score for
a test set. If the test set is organized into documents
(as many are, including those from WMT), its sen-
tences can be translated contextually and then split
back out to sentences for evaluation. The expec-
tation is that contextual translation will produce
gains. However, a key consideration is whether the
dataset is dense enough with contextual phenom-
ena. Attempts to automatically identify sentences
requiring context have shown the task to be dif-
ficult (Bawden et al., 2018) though possible with
hand-created rules (Fernandes et al., 2023; Wicks
and Post, 2023), but are often rare. Consequently,
improvements may be invisible without the right
test set.

We compare the performance of contextual
systems using a standard corpus-level metric,
COMET5, on the following two test sets:

• WMT15. We use newstest2015 (Bojar et al.,
2015) for EN→FR, and newstest2022 for
EN→DE and EN→RU (Kocmi et al., 2022).

• OpenSubtitles (Lison and Tiedemann, 2016).
We use the CTXPro (Wicks and Post, 2023)
gender dataset, which is large and focuses on
pronouns and anaphora.

4iwslt.org
5wmt20-comet-da

statmt.org
http://www2.statmt.org/wmt23/translation-task.html
http://www2.statmt.org/wmt23/translation-task.html
https://odp.org
iwslt.org
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English–French English–German English–Russian

source lines docs mean lines docs mean lines docs mean

mono 166.4 5.5 29.7 205.4 7.0 29.1 202.7 6.5 31.1
parallel
→ crawled 123.1 3.7 33.0 116.7 4.7 16.6 72.4 4.7 13.2
→ ccmatrix 65.1 0 - 45.4 0 - 2.4 0 -

Table 2: Statistics of the training data used in our experiments (lines and docs in millions). The mean column is the
mean document length in sentences of documents with ≥ 2 sentences.

Because the CTXPro dataset was constructed to
select them, we expect it to be much denser in
discourse phenomena. Data sizes are listed above
the results in Table 3.

4.2 Contrastive test sets

The dominant paradigm for evaluation of long-
tail document phenomena has been so-called con-
trastive evaluation (Sennrich, 2017), in which a
system is tested on its ability to discriminate (via
assigned model score) between correct and incor-
rect translation pairs. The correct examples are
usually taken from found text; the incorrect ones
are created by inserting an error of some sort. We
look at three such test sets, examples of which can
be found in Appendix A.

ContraPro (EN-DE) Müller et al. (2018) focus
on the German pronouns es, er, and sie. They
pair sentences containing naturally-found instances
of pronouns drawn from OpenSubtitles with two
variants where the incorrect pronoun has been used.

ContraPro (EN-FR) Lopes et al. (2020) ex-
tended ContraPro for EN-FR; the main difference
is that there is only one incorrect example, since
French has only two grammatical genders.

GTWiC (EN-RU) (Voita et al., 2019b) Good
Translation, Wrong in Context (GTWiC) tests verb
selection (500 instances) and morphology (500) in
the presence of source-side ellipsis.

4.3 Testing generative ability

The challenge sets above test whether a model can
discriminate between good and bad examples with
using model score. However, this is at best a proxy
for the true test of a machine translation system,
which is to determine whether it generates the cor-
rect word or phrase. As we will show, many docu-
ment models perform extremely well on these tasks,

but when asked to actually translate the source sen-
tence, produce the wrong word (Table 5). The
contrastive nature of these test sets is at odds with
the actual task: what is needed are metrics that di-
rectly evaluate a model’s generative, rather than its
discriminative, ability.

Fortunately, because these test sets were dis-
tributed with rich annotation information, we can
transform them into generative test sets, where we
test for the correct word in the output. A test set
T comprises a set of test examples in the form of
tuples (S,R,w), where S is the source sentence, R
the reference, and w ∈ R the target word or phrase
that is expected to be found in the translation out-
put. Let {Ti} be the set of translations of the source
sentences {Si}. We compute accuracy6 as

acc(T, T ) =
1

|T |

|T |∑
i=1

δ(wi ∈ Ti)

This is not a perfect metric, since a correct trans-
lation may have paraphrased around the pronoun,
but we do not expect that to systematically favor
any particular system.

We have further opportunity to test this kind of
accuracy with CTXPro (Wicks and Post, 2023),
which expands ContraPro’s coverage to many other
languages and linguistic phenomena (auxiliaries,
formality, gender, and inflection). CTXpro is eval-
uated only generatively, and has been been tested
only on a single system, DeepL,7 which is known
to make use of context.

5 Experimental setup

We train and compare five models on the exact
same data from two sources: parallel (P) and back-
translated monolingual (B) data; the only differ-
ence among the models is whether document sam-

6Here accuracy is the same as both precision and recall.
7deepl.com

deepl.com
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ples are drawn from neither, one, or both of the
datasets.

Training All models are transformers trained
with Marian (Junczys-Dowmunt et al., 2018a,b).
We create two classes of models: first, those for
backtranslation, and second, a set of models that
constitute our primary comparative evaluation. For
each language pair, we build a single joint unigram
subword model (Kudo, 2018) with a vocabulary
size of 32k that is used for both sets of models.
Models are trained on random permutations over
the training data for a predetermined number of
updates. We use a batch size of 500k target-side
tokens and a maximum sample length (whether sen-
tences or pseudo-documents) of L = 256 tokens.

Backtranslated data The monolingual data
is backtranslated (Sennrich et al., 2016) using
sentence-level transformer systems (Vaswani et al.,
2017) with 12 encoder and 6 decoder layers, an
embedding size of 1024, and a feed-forward di-
mension of 8192. These models are trained for 20
virtual epochs.

This backtranslated data will be used to train
contextual systems, but we note that this is not
a problem, for two reasons. The major reason is
that the target-side contextual signal is unaffected
by backtranslation; since the original document
boundaries are retained, any mistakes introduced
by sentence-level backtranslation will appear just
as normal source-side noise that the model must
learn to overcome. Losses will be computed against
the original, intact, target-side context. Second,
even if this were not the case, our backtranslation
models are into English, which is morphologically
simpler than the evaluated translation direction.

Models For our contextual models, we also train
transformers with a 12-layer encoder, a 6-layer
decoder, and an embedding dimension of 1,024, but
increase the feed-forward network size to 16,384.
These models are trained for 40 virtual epochs to
reflect the larger amounts of training data.

All of our models are trained on the complete
parallel (P) and backtranslated (B) data. They vary
only in whether the training procedure is permitted
to construct multiple-sentence samples (also called
pseudo-documents or chunks) from both, neither,
or exactly one of these two pools of data. We
compare the following systems, using the syntax
NAME(pool1, pool2) to denote the pools of data
each draws from; the presence of a box around

the data source notes that pseudo-documents were
drawn from it.

• SENT(P ,B). A sentence-level baseline.

• RAND(
...
P ,

...
B). A contextual system, but trained

with completely random contexts.

• DOC(
...
P ,

...
B). A contextual system, with docu-

ments from parallel and back-translated data.

• DOC(
...
P ,B). A contextual system, with docu-

ments drawn from parallel data only.

• DOC(P ,
...
B). A contextual system, with docu-

ments drawn from backtranslated data only.

Creating samples We create our training data
on the fly using SOTASTREAM (Post et al., 2023),
which iterates over P and B. At each iteration, each
data source is permuted randomly at the document
level. To generate each sample, SOTASTREAM

first chooses randomly between the two data pools.
If documents are disabled on the pool, it simply
returns the next sentence pair. If documents are
enabled, it then chooses a maximum token length,
and concatenates sentences on both sides until this
length is reached on the source side, or the docu-
ment’s end is reached. Concatenated sentences are
joined with a special ⟨SEP⟩ token, which facilitates
sentence alignment at inference time for evaluation.
Contextual samples are chunked, our term for the
1:1 concatenative construction described in Tiede-
mann and Scherrer (2017).8 The training toolkit is
then responsible for buffering as many samples as
are needed to sort and form batches for training.

Inference For inference, we use the last sentence
approach as defined in Herold and Ney (2023):
each input sentence (the payload) is prepended
with left sentence context, up to a maximum token
length, L, which includes the payload. The trans-
lation system translates this as a single unit. The
⟨SEP⟩ token is then used to extract the payload’s
translation. This is repeated for all sentences in a
test set, allowing standard sentence-level metrics
to be applied to the results.

6 Results

Sentence-level metrics We begin by establishing
baseline scores with a standard corpus-level met-
ric, COMET, in Table 3. We include a commercial

8This can be contrasted with the “multi-resolution” ap-
proach of Sun et al. (2022), which creates training samples
of different lengths from many overlapping sub-sequences of
each input document
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EN→DE EN→FR EN→RU
WMT CTXPro WMT CTXPro WMT CTXPro

#lines 1,500 31,640 2,307 43,375 2,307 32,948

Microsoft 62.0 27.7 67.6 36.4 67.3 39.1
se

nt
-l

ev
el

SENT(P ,B) 61.1 24.4 67.4 34.5 70.0 38.5
RAND(

...
P ,

...
B) 59.2 22.7 67.6 33.6 68.9 36.6

DOC(
...
P ,

...
B) 60.2 23.4 67.0 33.5 70.5 38.8

DOC(
...
P ,B) 59.7 22.6 68.8 34.1 70.0 37.8

DOC(P ,
...
B) 60.9 24.5 67.8 34.7 70.3 38.2

co
nt

ex
t RAND(

...
P ,

...
B) 58.8 20.4 66.8 32.1 68.7 35.4

DOC(
...
P ,

...
B) 60.7 26.9 67.2 37.8 69.2 43.2

DOC(
...
P ,B) 60.2 25.4 67.9 37.6 68.5 40.3

DOC(P ,
...
B) 60.8 31.6 68.7 42.2 70.6 45.8

Table 3: COMET20 scores on WMT (22/15) and OpenSubtitles (CTXPro/gender) test sets translating alone (top
block) and with context (bottom block). Numbers within a column are comparable. The gains from DOC(P ,

...

B)
(with context) over SENT(P ,B) (without it) are much larger for the discourse-dense OpenSubtitles data.

baseline (Microsoft, accessed via API). As another
baseline, we present sentence-level results for the
sentence-level system trained on all of our data. We
then present results for all our models translating
the test corpora (WMT and OpenSubtitles, using
the CTXPro/gender dataset) in two modes: at the
sentence level (top block), and with context (bot-
tom block). In this way, we can look at the effect
of context at both training and inference time.

Accuracy-based generative evaluation Next,
we look at the broader CTXPro datasets and eval-
uate them using word accuracy on their relevant
phenomena. Table 4 contains results for all three
language pairs for all CTXPro datasets.

Contrastive suites Finally, we turn to the
document-level contrastive and generative metrics
described in § 4.2–4.3. Table 5 contains results for
all three language pairs.

7 Discussion

7.1 Standard sentence-level metrics show
gains if the dataset is dense enough

Table 3 shows state-of-the-art performance for all
models when translating at the sentence level (with-
out context), compared to the commercial system.
This confirms the large-scale, state-of-the-art na-
ture of our experiments. On the WMT datasets,
we see a fairly a regular small drop on sentence-
level translation with SENT(P ,B) (first row top
sent-level section), that is slowly regained as we

move down to DOC(P ,
...
B). We note that we do not

expect the contextual translation systems to per-
form better at sentence-level translation, but hope
they retain performance there.

Next, Table 3 allows comparison of sentence-
level translation to contextual translation (top ver-
sus bottom section). On the WMT datasets, the ef-
fects gains are fairly small (-0.3 for EN→DE, +0.6
for EN→RU). Looking at the CTXPro columns,
however, we observe fairly large, consistent gains
when translating contextually with nearly all the
(non-randomized) DOC systems, but especially for
the DOC(P ,

...
B) system across all three languages

(+7.2 for EN→DE, +7.7 for EN→FR, and +7.3 for
EN→RU). The CTXPro dataset is the OpenSub-
titles gender-identified portion, so it is extremely
dense in phenomena that require context to resolve
compared to the WMT datasets, and is better able
to discriminate systems with contextual abilities.

7.2 Domain and context both play a role

The DOC(P ,
...
B) system showed large gains in Ta-

ble 3 when translating CTXPro contextually. One
explanation is that CTXPro is, by construction,
“discourse dense”. But it also represents a domain
shift, from news to conversational domains. We
would like to have an idea of how much of the gain
is due to each.

We therefore conduct a followup experiment in
EN→DE that compares two datasets in the Open-
Subtitles domain: the CTXPro/gender “dense” test
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EN→DE EN→FR EN→RU
AUX FORm GEN FORm GEN AUX FORm GEN INFl

#lines 3,180 45,000 31,640 30,000 43,375 8,667 40,075 32,948 30,000

SENT(P ,B) 4.7 42.1 44.4 38.2 38.9 5.3 51.2 37.5

RAND(
...
P ,

...
B) 4.7 39.6 42.4 36.9 38.2 5.5 51.4 36.7 32.2

DOC(
...
P ,

...
B) 4.9 41.7 50.7 38.7 47.6 20.9 58.6 45.5 39.8

DOC(
...
P ,B) 4.2 41.4 47.2 42.7 45.2 16.7 56.8 39.5 37.4

DOC(P ,
...
B) 7.5 45.0 66.0 43.8 54.8 25.2 58.7 53.5 42.6

Table 4: Generative accuracy on CTXPro datasets, where the task is to translate a source sentence and then determine
whether an exact form of the required target word is in the output. The contextual systems trained on documents
from mined parallel data perform notably worse than the DOC(P ,

...

B) system.

EN→DE EN→FR EN→RU
gender gender NP ellipsis VP ellipsis

model contr. gen. contr. gen. contr. gen. contr. gen.

RAND(
...
P ,

...
B) 43.3 35.5 71.2 40.1 18.0 24.8 52.6 4.8

DOC(
...
P ,

...
B) 77.0 40.9 91.2 56.2 20.9 58.6 45.5 39.8

DOC(
...
P ,B) 75.1 37.0 92.5 52.5 16.7 56.8 39.5 37.4

DOC(P ,
...
B) 80.8 66.8 93.4 68.5 25.2 58.7 53.5 42.6

Table 5: Document contrastive test scores (contr.) and their generative (gen.) variants. All accuracies are over items
with extra-sentential antecedents only. DOC(P ,

...

B) consistently performs best on generative metrics by wide margins,
while for contrastive metrics, other contextual systems are often similar or exhibit no consistent pattern.

Dense Sparse Dense
context true true rand

SENT(P ,B) 24.4 30.5 24.4

DOC(
...
P ,

...
B) 26.9 31.4 24.8

DOC(
...
P ,B) 25.4 32.4 25.4

DOC(P ,
...
B) 31.6 31.7 21.8

Table 6: EN→DE COMET scores on a dense dataset
(OpenSubtitles CTXpro/gender) with true and random
contexts; next, a sparse dataset (random sample of Open-
Subtitles) with true contexts. DOC(P ,

...

B) gains most
over the sentence baseline on dense with true contexts
and is harmed most on dense with random contexts. The
doc systems are similar on the sparse dataset.

set, and another test set, which contains a random
sample of 500 ten-sentence documents from Open-
Subtitles 2016, yielding a corpus size of 4,973 sen-
tences. We label this second one “sparse”: since
it was selected randomly, it is likely to be much
less dense in contextual phenomena. For contex-
tual systems, we translate each of these as a single
chunk, and then split them out for evaluation with

COMET. The results are in Table 6.
The differences between the first two columns

shows that the DOC(P ,
...
B) gains over the sentence

system are much larger on the “dense” dataset (+7.2
vs. +1.2). Performance among the contextual sys-
tems is closer, as we saw with WMT datasets. This
suggests that the flat performance with WMT data
was likely due to it, too, being sparse with contex-
tual phenomena. For standard, sentence-based
metrics like COMET to separate these systems,
dense test sets are needed.

Table 6 (column 3) contains the results of an-
other experiment, where we replace the context of
each sentence in the “dense” dataset with a random
context. This hurts performance, and the effect is
most pronounced on the DOC(P ,

...
B) system, sug-

gesting that this model is most dependent on a
reliable contextual clue.

7.3 Generative word-based accuracy
corroborates these differences

Table 4 presents the results of word-based accuracy
on the CTXPro datasets, across a range of linguis-
tic phenomena. With word-based accuracy, we
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are testing whether a word is present in the output.
This leaves open the possibility of metric mistakes.
For example, if the pronoun er is expected in the
output, a system could be penalized for translat-
ing the sentence correctly with no pronouns, or it
could be rewarded for generating a semantically
unrelated instance of er. We do not expect this to
systematically favor any one system.

Here, we see a similar gap between (a) contex-
tual systems versus a random context and (b) es-
pecially, a gap between DOC(P ,

...
B) and the other

contextual systems. For EN→DE and EN→FR,
the gender categories are similar to the ContraPro
test sets for those languages, but much larger. This
is most true for the GENder category (with gains
of +23.6, +16.6, and +10.4), but also for other cat-
egories, including auxiliaries (+19.7 for EN→FR)
and EN→RU inflection (+10.4).

7.4 The general trend favors BT-only
contextual data

Figure 1 visualizes the metric score gains from Ta-
bles 3 and 5 for all four contextual models over the
sentence-level baselines. The x-axis is arranged
by the percentage of the contextual examples that
are drawn from parallel data. This makes clearer
the observations from the discussion so far: con-
textual annotations from parallel data are better
than nothing, but they are inferior to those from the
backtranslation monolingual data, and removing
them is preferable.

7.5 Contrastive test sets are less
discriminative

Table 5 contains results that pair contrastive accu-
racies (§ 4.2) with their generative counterparts.
Across all three language pairs, there is an inter-
esting pattern: in the contrastive metrics, the docu-
ment systems improve over the sentence baseline,
as a block. However, the generative metrics see
their best results with DOC(P ,

...
B), often by a large

margin. Together with the observations in the pre-
vious section, we believe this calls into question
the reliability of contrastive metrics. What we re-
ally care about in an MT system is its ability to
generate the correct results at inference time. Dis-
criminative ability is at best a proxy for this ability;
if its results do not correlate with such metrics, it
calls into question its reliability.
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Figure 1: Contextual metric gains over the sentence
baseline for COMET and accuracy metrics for the four
systems, arranged by the percentage of contextual sam-
ples sourced from parallel data.

7.6 Experiments with public data provide
some corroboration

Since complete document annotations for pub-
licly available large-scale parallel data do not
exist, we were unable to build DOC(

...
P ,

...
B) and

DOC(
...
P ,B) on open data. However, we can build

the SENT(P ,B) and DOC(P ,
...
B) systems with a sub-

set of the WMT22 EN→DE data with monolingual
document annotations, and see whether they exhibit
the same pattern.

We use all available parallel data provided for
WMT22 (Kocmi et al., 2022):9 Europarl v10
(Koehn, 2005), Paracrawl v9 (Bañón et al., 2020),
Common Crawl,10 News Commentary, Wiki Ti-

9statmt.org/wmt22/translation-task.html
10https://commoncrawl.org/

statmt.org/wmt22/translation-task.html
https://commoncrawl.org/
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context But let’s not give in just yet.⟨SEP⟩ Right now, this is our one chance to be
different.⟨SEP⟩ We could do something great with it.⟨SEP⟩ Like save the science
museum.⟨SEP⟩ We grew up going to that place our whole lives.⟨SEP⟩ It’s gave us
so much.⟨SEP⟩ This is an opportunity to give something back.⟨SEP⟩ Besides, aren’t
you curious?⟨SEP⟩ So, three wishes are granted to whoever discovers the box.

source But we all found it. And touched it at the same time.
SENT(P ,B) Aber wir haben es alle gefunden. Und es gleichzeitig berührt.

RAND(
...
P ,

...
B) Aber wir haben es alle gefunden und gleichzeitig berührt.

DOC(
...
P ,

...
B) Aber wir haben es alle gefunden. Und haben es gleichzeitig berührt.

DOC(P ,
...
B) Aber wir haben sie alle gefunden und gleichzeitig angefasst.
ref Aber wir haben sie alle gleichzeitig entdeckt und berührt.

context Mark it.⟨SEP⟩ If Mr. Wick isn’t dead already, he soon will be.⟨SEP⟩ Will you mark
it, sir?⟨SEP⟩ You have no idea, what’s coming do you?⟨SEP⟩ I have everyone in New
York looking for him.⟨SEP⟩ I doubt we will see him again.⟨SEP⟩ Do you now?⟨SEP⟩
You stabbed the devil in the back, and forced him back into the life that he had just
left.⟨SEP⟩ You incinerated the priest’s temple.

source Burned it to the ground.
SENT(P ,B) Verbrannte es bis auf die Grundmauern.

RAND(
...
P ,

...
B) Verbrannte es zu Boden.

DOC(
...
P ,

...
B) Hast es zu Boden gebrannt.

DOC(P ,
...
B) Sie haben ihn niedergebrannt.
ref Und ihn niedergebrannt.

Table 7: Translation examples from the CTXPro gender dataset demonstrating DOC(P ,
...

B)’s superior performance.
Pronouns are in bold with antecedents underlined. For all but SENT(P ,B), the source is translated together with the
context, and then the context is discarded.

.

tles v3, Tilde MODEL Corpus (Rozis and Skadin, š,
2017), and Wikimatrix (Schwenk et al., 2021a). A
few of these resources have document-level infor-
mation, but we do not use any of it. For monolin-
gual data, the only data available with document
metadata is News Crawl.11 We used all even years
from 2008–2020, backtranslating it from German
to English with an internal system. No filtering is
applied. From this data, we train the only two of
our systems supported by this setup: SENT(P ,B)
and DOC(P ,

...
B). These are trained for 40 virtual

epochs each using the same settings described in
Section 6.12

Results can be found in Table 8. They are en-
couraging: we see the same pattern of improvement
between SENT(P ,B) and DOC(P ,

...
B), although the

absolute numbers are lower. Compared to our in-
house data, the document metrics are even better
for SENT(P ,B).

11https://data.statmt.org/news-crawl/de-doc/
12Mono data: 311.2m lines, 14.1m docs, with a mean sen-

tence length of 21.9 sentences. Parallel data: 297.6m lines.

gender
system COMET contr. gen.

SENT(P ,B) 60.6 56.7 23.9
DOC(

...
P ,

...
B) x x x

DOC(
...
P ,B) x x x

DOC(P ,
...
B) 59.4 83.4 64.3

Table 8: Metrics on the only two models we are able to
build on public data. Similar patterns are observable to
those seen in Tables 3 and 5.

7.7 MT output in crawled parallel data

We do not undertake an exploration of the causes
for the results and analysis discussed in Figure 1
and throughout this section, but there is an ob-
vious explanation: we suspect that parallel web-
crawled data is full of machine-translated output.
Widespread use of translation across the web, es-
pecially since the release of Google Translate in
2006, is a commercial success story that has un-
fortunately produced a kind of “poisoning of the

https://data.statmt.org/news-crawl/de-doc/
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English German

Unique Moorish style villa set in a tropical oa-
sis with pool, guest accommodation and amazing
views. ⟨SEP⟩ Property Reference 1846 ⟨SEP⟩ It
was built by the current owner. . .

Einzigartige maurische Villa in einer tropischen
Oase mit Pool, Gästeunterkunft und herrlicher
Aussicht. ⟨SEP⟩ Referenznummer 1846 ⟨SEP⟩ Es
wurde vom jetzigen Besitzer gebaut. . .

Table 9: An example of bad data drawn from the parallel data pool. While the sentence-level translations are fine,
the incorrect pronoun Es in the third sentence suggests sentence-level machine or low-quality human translations.

well”, where machine translation outputs are later
collected as training data for new systems (Venu-
gopal et al., 2011). Recent work has corroborated
how extensive this is in multi-way parallel data
(Thompson et al., 2024).

Quantifying this awaits further work, but it is
easy to source examples from our parallel data (Ta-
ble 9). While we don’t know if this was generated
by machine or a human, we do know that even
large NMT systems are sensitive to small amounts
of poor data.13. This data may still be of high qual-
ity at the sentence level; it is only inter-sentence
contextual information that is affected. If true, this
suggests that contextual translation introduces
a new quality dimension that is invisible in the
standard sentence-level training paradigm, and the
problem may in fact be quite large, since all ma-
chine translation content in the wild will have been
generated at the sentence level.

We suspect that our monolingual data—which
by design was sourced from known target-native
sites, such as newspapers—is largely immune from
these problems. Training on sentence-level transla-
tions is primarily a problem for data translated in
the forward direction. Backtranslation introduces
noise into the source language text, while preserv-
ing the target-language contextual signal.

We leave to future work an investigation into
detecting and removing machine translation output
from parallel data at high enough precision.

8 Conclusions

Machine translation research and production sys-
tems continue to be dominated by sentence-level
approaches. A common explanation for this short-
coming is the lack of document-annotated parallel
data. We have compared the effectiveness of con-
structing contextual translation models for three
translation directions in large-data settings. Our
results suggests that while mined parallel data is

13A classic example is source-copy data (Ott et al., 2018)

of high-enough quality for building sentence sys-
tems and contains some contextual signal, it is
best to construct contextual training samples
from back-translated data only. Although we
have not investigated the reasons for this, we con-
sider it a strong possibility that our parallel data,
which is mostly crawled from the web and has had
only sentence-level filtering applied, contains large
amounts of data that was machine-translated at the
sentence level, a finding that is very likely to hold
for publicly available data, as well. This suspicion
makes sense a priori, and is bolstered in other re-
cent work (Thompson et al., 2024; Wicks et al.,
2024; Pal et al., 2024).

We have also shown the importance of evaluat-
ing contextual machine translation output in its
generative capacity, rather than in its ability to
discriminate good outputs from bad ones. This can
be done by using provided challenge sets like CTX-
Pro or converting existing contrastive metrics like
ContraPro and its variants, or by using standard
corpus-level metrics like COMET on test sets that
are sufficiently dense with contextual phenomena.

A fruitful avenue for followup work is to auto-
matically identify sentences that require context
to translate correctly, which could be used to filter
training data and also in the construction of new test
sets. Though we have focused on “traditionally”-
trained MT, it will also be useful to learn how
LLMs perform on these tasks.
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Limitations

With respect to reproducibility, the deepest limita-
tion of our paper is our use of private data. There is
therefore a risk that our findings might not be repro-
ducible by other teams working with (necessarily)
different datasets. Finally, although we suspect
our results will hold for language pairs beyond the
three we investigated, it is possible they will not
generalize.
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A Dataset examples

Examples from the datasets used for generative and
contrastive evaluation can be found in Tables 10
and 11.

B Model capacity

Much work in investigating document-level ma-
chine translation has been limited to standard-size
Transformer architectures (cf. Zhang et al. (2018);
Sun et al. (2022); Lopes et al. (2020)). Yet it stands

The prototype has passed every test, sir. It’s
working. | Der Prototyp hat jeden Test erfolgre-
ich durchlaufen, Sir. {Er,Es,Sie} funktioniert.

(a) ContraPro example. Contrastive examples are formed
by substituting incorrect pronouns.

(b) GTWiC example. The first Russian sentence uses the
formal register.

Table 10: Examples from contrastive test sets.

(AUX ) I just figured you need to know. And
now you do. → Je pensais que tu méritais de
savoir. Et maintenant tu sais.

(INF) My friend had some mech work done here.
Industry stuff. → Вы ставили имплант моей
подруге. Промышленную штуковину.

(FORm) I don’t know you, but.. → Ich kenne
Sie nicht, aber...

Table 11: Examples of contextually-sensitive auxiliary
and inflection elision from the CTXPro dataset.

to reason that modeling longer-range phenomena
will require increased model capacity, and in fact,
the base model size we chose for our experiments
(12 layer encoder, 16k FFN) reflects this. Here, we
provide more detail, varying two model parameters
only: (i) the number of encoder layers, and (ii) the
width of the model feed-forward layer (encoder and
decoder side). We keep all other parameters the
same, including fixing the decoder depth to 6. Fo-
cusing on changes to the encoder depth helps limit
grid search and is justified by prior work showing
that (relatively cheap) encoder layers can be traded
for (relatively expensive) decoder layers with no
penalty (Kasai et al., 2020). We alternate between
increasing the number of encoding layers, and in-
creasing the dimension of the Transformer feed-
forward layer.

Table 12 contains English–German results. Un-
surprisingly, all scores continue to rise, up to the
wide 18-layer model. Both increasing the number
of encoder layers, and increasing the size of the
FFN, contribute to better performance. This sug-
gests that the common approach of working with
6-layer Transformer base models is not enough
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arch params BLEU COMET C/Pro G/Pro

6/1k 146m 27.0 48.7 65.2 58.4
6/2k 171m 27.4 49.7 66.2 58.7
6/4k 221m 28.0 51.0 69.7 62.9
12/4k 297m 28.4 51.8 70.6 66.0
6/8k 322m 27.8 51.0 71.7 62.8
12/8k 448m 28.6 52.5 74.2 67.1
6/16k 523m 28.4 51.7 74.5 64.9
18/8k 574m 28.8 53.0 75.0 67.1
12/16k 750m 28.9 52.8 75.8 68.5
18/16k 977m 29.3 53.3 75.5 69.4

Table 12: Model capacity (encoder layers / FFN / #
params) for an EN-DE document model, ordered by
param. count. Decoder depth is always 6 layers. Scores
were computed on a checkpoint after 30k updates.
BLEU and COMET scores are on WMT21, translating
as sentences. C/Pro is over the complete test set, while
G/Pro is over only sentences with external anaphora.

for document-context MT. There is more to gain
by moving to larger models and likely, to larger
datasets and context lengths, as well.


	Introduction
	Background and Related Work
	The data challenge
	Contextual evaluation
	Corpus-level metrics
	Contrastive test sets
	Testing generative ability

	Experimental setup
	Results
	Discussion
	Standard sentence-level metrics show gains if the dataset is dense enough
	Domain and context both play a role
	Generative word-based accuracy corroborates these differences
	The general trend favors BT-only contextual data
	Contrastive test sets are less discriminative
	Experiments with public data provide some corroboration
	MT output in crawled parallel data

	Conclusions
	Dataset examples
	Model capacity

