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Abstract

As research on machine translation moves to
translating text beyond the sentence level, it
remains unclear how effective automatic eval-
uation metrics are at scoring longer trans-
lations. In this work, we first propose a
method for creating paragraph-level data for
training and meta-evaluating metrics from ex-
isting sentence-level data. Then, we use these
new datasets to benchmark existing sentence-
level metrics as well as train learned metrics at
the paragraph level. Interestingly, our experi-
mental results demonstrate that using sentence-
level metrics to score entire paragraphs is
equally as effective as using a metric designed
to work at the paragraph level. We speculate
this result can be attributed to properties of
the task of reference-based evaluation as well
as limitations of our datasets with respect to
capturing all types of phenomena that occur in
paragraph-level translations.

1 Introduction

Automatic evaluation metrics have always been
a critical component to the progress of research
on machine translation (MT). As the field of MT
moves beyond translating individual sentences to
translating full paragraphs, book chapters, or doc-
uments (Tu et al., 2018; Sun et al., 2022; Thai
et al., 2022; Jiang et al., 2023; Post and Junczys-
Dowmunt, 2023), automatic metrics need to be
designed to work on these longer texts.

Currently, how well automatic metrics agree
with human judgments of paragraph translation
quality is an open question.1 Few studies have
meta-evaluated metrics on longer texts, and those
that have are focused on the literary domain and
are limited in the size of the evaluation dataset

1Translation beyond the sentence level is often referred to
as document-level MT. However, there is no clear definition
for the term “document.” We use “paragraph” in this work
because we feel it most accurately describes the length of text
in our datasets. See §2 for more details on this.

(Jiang et al., 2022; Thai et al., 2022; Karpinska and
Iyyer, 2023). In this work, we investigate training
and meta-evaluating metrics for scoring paragraph
translations using the benchmark Workshop on Ma-
chine Translation (WMT) datasets that are widely
used for metric development (Freitag et al., 2022).

Due to the scarcity of human ratings of para-
graph translations, we propose a method to cre-
ate paragraph-level training and meta-evaluation
datasets from the existing WMT sentence-level
datasets (§3). Although these ratings are typically
only used at the sentence level, they were collected
on contiguous paragraphs and performed with doc-
ument context, so they can be used as paragraph-
level datasets. We repurpose these datasets to
benchmark existing sentence-level metrics as well
as train new paragraph-level metrics for scoring
paragraph translations (§4).

Our experimental results are somewhat surpris-
ing. We find that there appears to be little evidence
that training on paragraph-level data is beneficial—
at least given the limitations of our experimental
setup. Using metrics trained on sentence-level
data only to directly score full paragraphs achieves
comparable agreement to human ratings as metrics
trained on paragraph-level data (§6.1). Sentence-
level metrics appear to generalize well to inputs
much longer than they were trained on (§6.2).

We hypothesize these observations can be ex-
plained by the nature of evaluating translations and
characteristics of our paragraph-level dataset (§7).
We speculate that long range dependencies—which
paragraph-level metrics can model but sentence-
level likely do not—may not be too important for
achieving high agreement with human ratings. Fur-
ther, due to the fact that our training and evaluation
datasets assume a sentence alignment between the
reference and hypothesis paragraphs, certain trans-
lation phenomena that sentence-level metrics may
struggle to handle, like sentence or information re-
ordering, are not well represented in the dataset,
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limiting our ability to show the benefits of training
on paragraph-level ratings.

The contributions of our work include (1) a
method for constructing paragraph-level training
and meta-evaluation datasets from sentence-level
ratings, (2) an experimental study that demon-
strates the comparable performance of sentence-
and paragraph-level metrics, and (3) an analysis
that aims to provide an explanation for our experi-
mental observations.

2 Terminology

Throughout this paper, we use terms like segment,
sentence, paragraph, and document to refer to dif-
ferent lengths of text. To the best of our knowledge,
there are no agreed upon definitions for these terms
in the MT literature, so here we define how they
are used for the rest of the paper.

We refer to the input text to an MT system or
evaluation metric as a segment, irrespective of its
length. Traditionally, segments in MT have been
roughly equivalent to one sentence, although some-
times they can be short phrases or even longer than
a single sentence. Regardless, we use sentence to
refer to this unit of text since it accurately describes
the most common text length that is widely used in
MT.

Our work investigates evaluating paragraphs of
text, which we define to be multi-sentence seg-
ments. We do not require that the paragraphs used
in this work obey the traditional definition of a para-
graph (i.e., a unit of text separated by a newline
character). We refrain from calling this unit of text
a document—which we consider to be all of the
possible input text—since each document can be
broken down into multiple paragraphs and the term
paragraph more accurately describes the length of
text we use.

3 Paragraph-Level Datasets

The two main sources for training and meta-
evaluating MT metrics are the direct assess-
ment (DA) and Multi-dimensional Quality Metrics
(MQM; Lommel et al., 2014; Freitag et al., 2021a)
datasets that the Workshop on Machine Translation
(WMT) has collected as part of the yearly metrics
shared task (Freitag et al., 2022). The DA ratings
were done by a mixture of expert and non-expert
raters (depending on whether the translation direc-
tion is into or out of English) who assigned a qual-
ity score in the range 0-100 to translated sentences.
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Figure 1: The number of contiguous paragraphs for the
given number of sentences per paragraph where each
sentence is rated by the same rater. Actual values are
included in Appendix A.

Because of differences in rater behavior, the DA
scores are z-normalized per rater.2 In MQM, expert
raters identify error spans in translated sentences
and assign each error a category and severity level,
which are used to calculate a score for that error. A
sentence’s MQM score is defined as the sum of the
errors’ scores.

Training and meta-evaluating metrics at the para-
graph level requires a collection of translated para-
graphs and paragraph-level quality scores. Luckily,
the DA data since 2019 and the MQM data can
be considered to be paragraph-level ratings. The
ratings were performed on contiguous blocks of
sentences that were translated by the same system
(e.g., the first k sentences per document are rated
for a system). Although the scores were collected
at the sentence level, the ratings were done in con-
text, meaning the raters had access to the document
context for a sentence, so the scores should reflect
paragraph- or document-level phenomena like dis-
course errors. Therefore, we use the sentence-level
DA and MQM data to construct paragraph-level
datasets as follows.

For each document translated by a system, we
run sliding window of size k sentences from the
start to the end. If all k sentences in the window
have been rated, those k sentences are concatenated
together to become a paragraph instance and the
window shifts by k. Otherwise, the sliding window
shifts by 1 and the process repeats. To maintain
consistency between the sentence scores within a
paragraph, we additionally require that every sen-

2The methodology for collecting DA ratings has changed
throughout the years. See Barrault et al. (2020) for the de-
scription in 2020, the most recent year used in this work.
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Figure 2: The distribution of paragraph lengths in SPM
tokens (i.e., sub-word tokens; Kudo and Richardson,
2018) on the WMT’22 MQM dataset for different num-
bers of sentences per paragraph. Additional datasets’
distributions are included in Appendix A.

tence is scored by the same rater. Then, we define
the paragraph-level scores to be the average DA
z-score or sum of MQM scores for each sentence
in the paragraph.3 The result is a dataset of rated
paragraph translations of k sentences each.

We apply this dataset construction approach to
the DA and MQM data for k = 1, 2, . . . , 10 sen-
tences per paragraph. The number of paragraphs
is shown in Figure 1 and the distribution of the
lengths of the new translated paragraphs is shown
in Figure 2. As k increases, the number of para-
graphs decreases because there are fewer candidate
paragraphs, while the length of the paragraphs in-
creases, roughly by an expected factor of k.

These paragraph-level DA and MQM datasets
are used to train and meta-evaluate paragraph-level
metrics for the rest of this paper.

4 Paragraph-Level Metrics

We explore two different methods for creating para-
graph metrics: directly applying sentence-level
metrics to paragraphs (§4.1) and training metrics
on paragraph-level data (§4.2).

4.1 Applying Sentence-Level Metrics on
Paragraphs

Although automatic metrics that have been used
to evaluate sentence-level MT were not explicitly
designed to evaluate paragraphs, they can be repur-
posed to score paragraphs in different ways.

First, the input paragraph can be treated as if it
were one long segment and passed to the metric

3Summing MQM scores was done to generalize an MQM
rating for paragraphs since a sentence’s MQM score is the
total error weight for that sentence. The choice of summing or
averaging does not matter for metric meta-evaluation because
the correlations are scale invariant.

to calculate a score. For metrics that use bag-of-n-
grams representations, like BLEU (Papineni et al.,
2002), there is no input length limitation. How-
ever, some learned metrics, like BLEURT (Sellam
et al., 2020), have a maximum possible sequence
length due to restrictions related to neural network
architectures. Therefore, the length of the input
paragraph is restricted in some cases.

Then, if there is assumed to be an alignment
between the source, reference, and hypothesis sen-
tences within a paragraph (as is in the case with
our datasets), a paragraph score can be calculated
by averaging the sentence-level metric’s score for
each of the k individual sentences. While this slid-
ing window approach more closely aligns how the
metrics are being used to how they were designed,
we argue this approach is less than ideal because
the 1:1 sentence alignment between the source and
hypothesis translations will not always exist. How-
ever, this approach is useful for understanding and
analyzing the behavior of metrics when they are
used to score full paragraphs directly.

4.2 Learning Paragraph-Level Metrics

While sentence-level metrics can be repurposed
to score paragraphs, the lengths of the input para-
graphs are significantly longer than the lengths of
individual sentences (compare k = 1 to k > 1
in Figure 2) and there may be cross-sentence de-
pendencies that are not learned by sentence-level
metrics. Therefore, we explore creating a metric
specifically for paragraph-level data.

To do so, we train a BLEURT-style regression
model on the paragraph-level datasets: The ref-
erence and hypothesis paragraphs are tokenized
and concatenated together (separated by a special
token), then passed as input to a neural network.
The network is then trained to predict the hypoth-
esis paragraph’s ground-truth quality score. Sec-
tions 5.2 and 5.4 contain more information about
the model’s architecture and implementation de-
tails.

It is desirable for the paragraph-level metric
to be able to score paragraphs of any length, so
we train the metric on paragraphs composed of
k = 1, 2, . . . , 10 sentences. Because the number of
paragraph instances decreases significantly as k in-
creases (see Figure 1), longer paragraphs will rarely
be seen during training. Therefore, we explore two
different techniques for weighting training data:
one that selects paragraphs uniformly at random
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and one that performs a stratified sample so the
training data is composed of an equal number of
paragraphs for each value of k.

Next, we describe the experimental setup to eval-
uate the paragraph-level metrics.

5 Experimental Setup

5.1 Datasets

The paragraph-level datasets used in our experi-
ments are described in Section 3. The WMT’19
(Ma et al., 2019) and ’20 (Mathur et al., 2020)
paragraph-level DA data is used for training the
metrics described in this work, and all metrics are
evaluated on the WMT’21 (Freitag et al., 2021b)
and WMT’22 (Freitag et al., 2022) paragraph-level
MQM data. For both DA and MQM, we use
k = 1, 2, . . . , 10 sentences per paragraph. The
different paragraph lengths are combined during
training but separated for evaluation.

We additionally analyze the behavior of the met-
rics that we train on judgments collected by Karpin-
ska and Iyyer (2023) on literary translations. Their
dataset contains human preference judgments be-
tween paragraph translations. The translations
come from translation models that translated the
input one sentence a time in isolation, one sentence
at a time in context, the full paragraph directly,
and Google Translate. We evaluate how frequently
the metrics agree with the human preference judg-
ments.

5.2 Metrics

Paragraph-Level Metrics. We train two differ-
ent paragraph-level metrics, one for each of the
different weighting techniques, uniform and strati-
fied sampling (see §4.2). We refer to these metrics
as PARA-UNIF and PARA-STRAT.

Our metric uses the same architecture as the
Metric-X WMT’22 metrics shared task submis-
sion (Freitag et al., 2022). The metric builds on
the mT5 encoder-decoder language model (Xue
et al., 2021), which was originally designed to be a
sequence-to-sequence language model. We repur-
pose the model for our regression task as follows.
The inputs to the encoder are the hypothesis and
reference translations separated by a special token,
and a single dummy token is passed as the first
input to the decoder. We arbitrarily selected a re-
served vocabulary token, then trained the model
so that token’s output logit in the first decoding
step becomes the score for the input hypothesis

translation. This modification of the sequence-to-
sequence architecture for regression allows us to
utilize all of the pre-trained weights from mT5.

The maximum input sequence length to our met-
ric is 1024 SPM tokens (Kudo and Richardson,
2018). The inputs are truncated during training or
inference if the input is larger than 1024.4 In the
worst case, this happens up to 27% of the time on
the MQM data for 10 sentences per paragraph (see
Appendix A for specific statistics.)

Sentence-Level Baseline. In addition to the
paragraph-level metrics, we train a sentence-level
version that is trained on the same DA data but
only k = 1 sentences per paragraph. This base-
line metric can be used to directly compare to the
paragraph-level metrics that we train because the
model architecture, training procedure, etc., are
identical. The only difference is the training data.
This metric is referred to as SENT-BASE.

Other Metrics. In addition to the metrics de-
scribed in this paper, we evaluate BLEU (Pap-
ineni et al., 2002), COMET-22 (Rei et al., 2020,
2022), and PaLM-2 from Fernandes et al. (2023) as
sentence-level metrics applied to paragraphs (i.e.,
§4.1) and document-level metric BlonDE (Jiang
et al., 2022). BLEU scores translations using lex-
ical n-gram overlap, and COMET-22 is a learned
regression metric that first embeds the input hy-
pothesis, reference, and source, combines them to
a joint representation, then finally predicts a score.

The metric from Fernandes et al. (2023) is based
on the PaLM-2 large language model (Anil et al.,
2023). We evaluate both the zero shot version, in
which PaLM-2 is prompted to score a translation
on a scale from 0 to 100, and the regression version
that finetunes PaLM-2 on MQM ratings to predict
a floating point quality score, similar to COMET.
Our analysis includes the Bison variant of PaLM-2.

BlonDE evaluates discourse phenomena in doc-
ument translations via a set of automatically ex-
tracted features. It was designed to evaluate texts
longer than paragraphs, like book chapters, but we
compare against it in this work. BlonDE is avail-
able in English only.

We use the SacreBLEU (Post, 2018) implementa-
tion of BLEU and the Unbabel/wmt22-comet-da
COMET-22 model that was trained on sentence-
level WMT DA data from 2017-2020.5

4We experimentally saw no benefit from removing se-
quences longer than 1024 tokens during training.

5Note that the COMET-22 scores we report come from
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Figure 3: As the number of sentences per paragraph increases, the pairwise accuracy scores (y-axis) of the metrics
appears to either not decrease (system-level, left) or increase (segment-level, right). This suggests that accurately
scoring a paragraph is an easier task than an individual sentence, even for metrics that are not trained on paragraph-
level examples. The results of metrics trained in this work presented here are an average of 5 different runs. Results
for other language pairs follow the same trend and are included in Appendix B.

5.3 Meta-Evaluation Metrics

The quality of an evaluation metric is quantified by
measuring the correlation of its scores to human
ratings of translation quality, a process known as
meta-evaluation. In this work, we meta-evaluate
metrics using pairwise accuracy at both the system
and segment levels.6 A brief overview of how these
accuracy statistics are calculated follows.

At the system-level, an automatic metric and
human score is calculated per system by averag-
ing scores over paragraphs. The system-level pair-
wise accuracy is then computed by enumerating all
possible pairs of systems and then calculating the
proportion of those pairs for which the automatic
metric and human ground-truth ratings agree on
their ranking (Kocmi et al., 2021). Thus, the accu-
racy score can be interpreted as the proportion of
pairs of systems that the metric ranked correctly.

At the segment-level, we report segment-level
pairwise accuracy using the group-by-item vari-
ant of the segment-level correlation in combination
with tie calibration (Deutsch et al., 2023). In con-
trast to system-level accuracy, the group-by-item
segment-level correlation calculates the proportion
of pairs of translations of the same source segment
that the metric ranks correctly, then averages that
accuracy score over all source segments. The seg-
ments used in this evaluation are paragraphs, thus

only the reference-based regression model, not the ensemble
that was submitted to the WMT’22 metrics shared task.

6The segment-level correlation could be referred to as a
paragraph-level correlation in this work because the segments
we evaluate on are paragraphs. However, to be consistent with
the evaluation literature, we still use the term segment-level
correlation.

the interpretation of this accuracy score is the pro-
portion of pairs of translations of the same source
paragraph that are ranked correctly by the metric.

Because humans frequently assign the same
score to translations and regression-based evalu-
ation metrics almost never predict two translations
are tied, we follow Deutsch et al. (2023) and run
tie calibration before calculating the segment-level
accuracy. This procedure automatically introduces
ties in the metrics’ scores by searching for an ε dif-
ference in metric score that, when two translations
are considered to be a tie if they differ by less than
ε, achieves the highest accuracy score. We report
the accuracy score that corresponds to the best ε.

Results using Pearson’s correlation follow simi-
lar trends to the accuracy results and are available
in Appendix B.

5.4 Implementation Details

Our learned metrics are implemented with Ten-
sorFlow (Abadi et al., 2015) in the T5X library
(Roberts et al., 2022). They are initialized with
the XXL version of mT5, which contains 13B pa-
rameters. It is trained for a maximum of 20k steps
and a batch size of 128 using Adafactor (Shazeer
and Stern, 2018) on 64 v3 TPUs. Checkpoint se-
lection was done by selecting the step that has the
highest average segment-level pairwise accuracy
across language pairs and all values of k sentences
per paragraph after applying tie calibration. In gen-
eral, we observed the specific checkpoint selection
strategy was not too important.
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6 Results

First, we directly evaluate how well metrics per-
form when used to directly score paragraphs (§6.1),
then we further examine the behavior of different
paragraph-level metrics by analyzing their perfor-
mances with the context of their sentence-level
counterparts (§6.2).

6.1 Paragraph-Level Evaluation

Figure 3 plots the system- and segment-level corre-
lation results for different numbers of k sentences
per paragraph. Each metric is used to directly score
a full paragraph even if the metric was not designed
to do so (e.g., SENT-BASE or COMET-22). There
are several interesting observations.

Paragraph-Level Performance. First, as the
length of the paragraphs increases, the system-level
correlations remain relatively steady or increase
and the segment-level correlations clearly improve
for all metrics, except for PaLM-2 zero-shot. This
is evidence that scoring paragraphs is an easier task
than scoring individual sentences, a result that is
counterintuitive; scoring more text should seem-
ingly be a harder task. We hypothesize this result
is explained by the fact that some noise in the hu-
man and metric scores is averaged away, leaving
more reliable signals as the paragraphs get longer.
If the metric scores are unbiased estimators, their
agreement with human rating should then increase.

PaLM-2 zero-shot is an outlier in this case be-
cause it predicts a large number of ties between
translations. Prompting large language models for
MT evaluation is known to result in the model pre-
dicting a small number of unique scores, resulting
in many ties (Kocmi and Federmann, 2023; Fernan-
des et al., 2023). As the length of the paragraph in-
creases, the number of MQM ties decreases. Since
pairwise accuracy penalizes incorrect tie predic-
tions, the zero shot model has worse performance
on longer texts. See Figure 4 for a visualization of
the number of ties in the PaLM-2 output and MQM
scores.

Sentence vs. Paragraph Level. Then, there
appears to be little evidence that training on
paragraph-level examples results in better corre-
lations to human ratings on paragraph-level test
data. For instance, increasing the weight of the
paragraph-level data during training does not help
compared to uniformly sampling data (compare
PARA-STRAT to PARA-UNIF). Further, the base-
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Figure 4: There are fewer MQM ties as the number
of sentences per paragraph increases. The finetuned
PaLM-2 model outputs a very small number of ties,
whereas the zero-shot model consistently predicts a
large number of ties. Since the pairwise accuracy meta-
evaluation metric penalizes metrics for incorrect tie pre-
dictions, the zero-shot model will have worse perfor-
mance as the inputs get longer.

Dataset 1 Sent. per Para. 10 Sent. per Para.

25th 50th 75th 25th 50th 75th

WMT’19 DA 20 31 47 300 362 431
WMT’20 DA 24 38 58 318 410 524
WMT’21 MQM 28 41 57 370 433 516
WMT’22 MQM 15 27 43 265 333 426

Table 1: The SPM token lengths for the given per-
centiles are in general around 10 times larger with 10
sentences per paragraph compared to a single sentence.
Visualizations of the distributions for every paragraph
length can be found in Appendix A.

line metric SENT-BASE that shares the same archi-
tecture as our paragraph-level metrics but is only
trained on sentence-level data (k = 1) performs
just as well as the paragraph-level metrics. This
observation is additionally supported by COMET-
22’s results. The difference between the metrics
we train versus COMET is relatively constant for
all values of k, demonstrating that COMET is not
systematically worse on longer inputs.

The generalization of sentence-level metrics on
paragraph-level data is rather surprising. The
length of the inputs for scoring paragraphs is up
to 10x longer than those for scoring sentences (see
Table 1). Even though the length of the test data is
out-of-distribution with respect to the training data,
the sentence-level metrics predict reliable scores on
the paragraph-level data. Next, we further analyze
the sentence-level metrics to better understand their
scores.
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Figure 5: Metrics that score a paragraph directly (solid
line) versus those that assume an alignment between
the reference and hypothesis and calculate a score by
averaging across the k sentence-level values (dashed
line) perform very similarly. The drop from 1 sentence
to 2 sentences per paragraph is likely due to the fact
that a large number of ties in the ground-truth get bro-
ken, so introducing more ties via tie calibration is less
helpful since doing so is right less often. This phe-
nomenon does not happen with Pearson correlations
(see Appendix B).

6.2 Understanding Sentence-Level Metrics

To further analyze the performance of the sentence-
level metrics on paragraph-level data, we compare
the two versions of applying a sentence-level met-
ric to paragraphs discussed in §4.1. One version
directly scores a full paragraph (thus, making no
assumption about an alignment between the hy-
pothesis and reference), whereas the other averages
the scores of evaluating the individual k hypothesis
sentences against the corresponding reference sen-
tence (thus, assuming a sentence-level alignment
exists).

Figure 5 shows that for two sentence-level met-
rics, the baseline trained in this work and BLEU,
the performance of the two paragraph scoring vari-
ants is very similar. Then, Figure 6 shows that the
Pearson correlation between the scores for those
two variants is very high (≥ 0.85).

Together, these results point to the fact that there
is little difference between these two methods. Di-
rectly scoring a paragraph or scoring individual sen-
tences yield both similar scores and similar agree-
ment to human ratings. The sentence-level metrics
appear to be scoring full paragraphs in a desirable
way—by calculating some average score across
sentences.

This result is not obvious. As the length of
the input increases, the bag-of-n-grams representa-
tion used by lexical matching metrics like BLEU
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Figure 6: The plot shows the Pearson correlation on en-
de between directly predicting a score for a paragraph
of k sentences and calculating a paragraph score by av-
eraging over k sentence-level scores. The correlations
are quite high, demonstrating that the both methods re-
sult in very similar scores.

have an increased potential for erroneous matches
between the hypothesis and reference sentences,
which could result in misleading scores. Learned
metrics, like the ones trained in this work, have not
been trained on a significant amount of very long
data, so it is not clear that the scoring functions
they learn would generalize well to longer inputs.
Despite this, the sentence-level metrics appear to
predict high-quality scores for paragraphs.

In Section 7, we propose a hypothesis for why
this is the case and why training on paragraph-level
data does not appear to result in a better metric.

6.3 Literary Translation Evaluation

We compared how frequently SENT-BASE and
PARA-STRAT agree with the 540 pairwise human
preference judgments between paragraph literary
translations from Karpinska and Iyyer (2023). We
found that the two models agreed 285 and 305
times, respectively. While it is a positive signal
that the paragraph-level model appears to be bet-
ter aligned with human preferences of longer texts,
the difference was not quite statistically significant
under a pairwise permutation test with α = 0.05
(p = 0.09). Future work should perform a more
in-depth analysis of this data and collect a larger
number of paragraph translations and judgments.

7 Discussion

In theory, training on paragraph-level data should
have advantages compared to training on sentence-
level data. The metric (1) should be able to handle
longer input sequences, (2) it should be able to cap-
ture long range dependencies, and (3) it should be
able to model different paragraph-level phenomena
like information or sentence reordering. However,
we were not able to demonstrate these advantages
in practice, and we theorize why as follows.
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Source Context: Maria said no.
Source: She did not slap the green witch.

Reference Context: Maria dijo no.
Reference: No le dió una bofetada a la bruja verde.

Hypothesis: Ella(3)/Él(7) no le dió una bofe-
tada a la bruja verde.

Figure 7: An English-to-Spanish translation example
where the reference translation does not have enough
information to correctly evaluate the hypothesis. Gen-
der in Spanish is marked on pronouns, and Spanish
is a pro-drop language, which means the pronoun can
be omitted if the context is clear. In this example,
the pronoun is dropped from the reference, so deter-
mining whether the pronoun used in the hypothesis re-
quires taking into account the previous reference sen-
tence. We suspect such examples are not frequent, and
if they do exist, the information required to resolve the
ambiguity is relatively local to the reference sentence.

First, the analysis in §6.2 shows that sentence-
level metrics generalize well to significantly longer
input, so advantage (1) may not be so relevant. We
hypothesize that the scoring function learned by
sentence-level metrics like SENT-BASE or COMET
could score a token in the hypothesis based on some
alignment to the reference using its relative position
in the translation. This function would be agnostic
with respect to the global positioning, and thus the
scoring function would generalize well to longer
inputs. If this were true, training on paragraph-
level data would not be necessary to obtain good
performance on long sequences.

Second, evaluating translation quality seems to
be a very “local” problem in the sense that model-
ing long range dependencies is not frequently nec-
essary for evaluation. Often, the reference phrase
that aligns to a hypothesis phrase has enough in-
formation to accurately evaluate the hypothesis. If
it does not, the information is likely nearby, not
several sentences away (see Figure 7). Although
the sentence-level metrics were not trained on mul-
tiple sentences, we suspect they are able to capture
nearby dependencies across sentences when eval-
uating paragraphs. In theory, a paragraph-level
metric would have the ability to model long range
dependencies since it could observe them during
training. However, if they are infrequent, advantage
(2) over sentence-level metrics may be small.

Finally, the ability for our learned paragraph met-
rics to capture phenomena like sentence reorder-
ing is limited by our dataset construction method.

Since the paragraphs in our training and test sets
come from MT systems that translated one sentence
at a time, there are no phenomena like sentence re-
ordering present in the datasets. Therefore, the
paragraph-level metric cannot learn to model such
cases, and the metrics are never evaluated on them
either. Thus, the limitations of the dataset mean
that we cannot demonstrate advantage (3).

We believe that paragraph-level metrics are nec-
essary for evaluating true paragraph translations,
where MT systems can be more creative with how
a full paragraph is translated, rather than paragraph
translations that are created by translating individ-
ual sentences. We hypothesize that sentence-level
metrics will not generalize well when there is no
sentence alignment or there is significant informa-
tion reordering. To accurately evaluate actual para-
graph translations, metrics need to be trained on
similar data. Future work should invest in collect-
ing human ratings for paragraph-level translations
so that new metrics can be trained and evaluated.

8 Related Work

The vast majority of research on MT evaluation has
worked at the sentence level (Papineni et al., 2002;
Banerjee and Lavie, 2005; Snover et al., 2006;
Popović, 2015, 2017; Lo, 2019; Sellam et al., 2020;
Rei et al., 2020, 2022; Thompson and Post, 2020;
Wan et al., 2022), although there has been recent
interest in moving beyond sentence-level evalua-
tion. Vernikos et al. (2022) propose a method to
incorporate document-level context into a sentence-
level metric by using the additional context when
computing the representations for the hypothesis
and reference sentences. Although they use docu-
ment context in their metric, it is still scores single
sentences at a time, in contrast to the paragraph-
level metrics in our work that predict a score for
entire paragraphs at once. Then Jiang et al. (2022)
propose a document-level metric called BlonDE
that targets evaluating discourse phenomena as op-
posed to overall translation quality (i.e., they do
not model translation accuracy errors). To the best
of our knowledge, ours is the first study aimed at
training a learned metric that directly scores entire
paragraphs.

Other studies that have evaluated sentence-level
metrics beyond the sentence-level have done so in
the literary domain. Thai et al. (2022) show that
automatic metrics prefer MT output over human
translations, and Karpinska and Iyyer (2023) show
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that metrics prefer actual translations of paragraphs
over sentence-by-sentence translations. Our work
is complementary to theirs as we focus on the news
domain, train metrics on paragraph-level data, and
evaluate on a much larger set of human ratings.
It is not clear whether conclusions reached about
metrics in the news domain will apply to the literary
domain or vice versa.

Some researchers have developed challenge sets
that can be used to probe how well metrics cap-
ture discourse phenomena that appear when trans-
lating more than one sentence at a time (Bawden
et al., 2018; Müller et al., 2018; Lopes et al., 2020).
However, these challenge sets can be trivial for
reference-based metrics because the reference of-
ten resolves the ambiguity in the translation. To the
best of our knowledge, a challenge set that forces
reference-based metrics to use context outside of
a single reference sentence during evaluation (see
Figure 7) does not exist.

Research on generating translations of text
longer than single sentences directly use sentence-
level metrics to score translations (Tiedemann and
Scherrer, 2017; Miculicich et al., 2018; Ma et al.,
2020; Wu et al., 2023; Post and Junczys-Dowmunt,
2023). Our work can be viewed as a justification
for doing so.

9 Conclusion

In this work, we proposed a method for construct-
ing paragraph-level datasets for training and meta-
evaluating MT evaluation metrics from sentence-
level data. Our experimental results showed that
metrics trained on paragraph-level data do not nec-
essarily out-perform those trained on sentence-
level data, potentially due to the fact that sentence-
level metrics seem to generalize well to longer in-
puts and limitations of our paragraph-level datasets.
Future work should invest in collecting human judg-
ments for paragraph translations generated by MT
systems that directly translate full paragraphs in-
stead of translating one sentence at a time. Such a
dataset would be more likely to contain phenomena
that do not exist at the sentence level, which we hy-
pothesize would be more likely to require metrics
designed to work at the paragraph level.

Limitations

There are a couple of limitations related to our
dataset construction approach that are worth enu-
merating.

As discussed in Section 7, our ability to evaluate
metrics’ performances on all types of paragraph-
level translations is limited by our dataset construc-
tion method. Our translated paragraphs are gener-
ated by MT systems that translate one sentence at
time, which results in sentence aligned data. There-
fore, we are unable to evaluate metrics on true
paragraph-level translations that might have sen-
tence or information reordering.

Then, the WMT data no longer contains infor-
mation about the white space between the original
source sentences. Therefore, the DA and MQM
paragraph-level datasets do not contain the para-
graph breaks that were in the original document.
Each of the k sentences is concatenated together
and separated by a space in our work, so it is very
likely that the artificially constructed paragraphs
do not perfectly resemble real paragraphs.
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A Dataset Statistics

The exact number of paragraph-level instances by
WMT year and language pair that we generaetd
from our dataset construction procedure (see §3)
can be found in Table 2 for DA and Table 3 for
MQM. Figure 8 visualizes the distribution of the
lengths of the hypotheses in the paragraph-level
datasets based on mT5 SPM tokens. Then, Table 4
contains the number of paragraph examples that
are too long to fit into the 1024 SPM maximum
context length that is used by the metrics trained in
this work.

B Additional Results

Figure 9 contains the system- and segment-level
accuracy correlations on the en-de and en-ru lan-
guage pairs from WMT’22 MQM that were not
presented in the main body of the paper. Figure 10
contains the correlations for all 3 language pairs
but uses Pearson correlation instead of pairwise
accuracy.

Figure 11 shows the correlation between the two
ways to apply a segment-level metric to paragraph-
level data, directly scoring the paragraph or averag-
ing the k segment scores, on the en-ru and zh-en
WMT’22 MQM dataset.
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Figure 8: The distribution of the length of the hypoth-
esis translations for the direct assessment (DA) and
MQM datasets for a given number of sentences per
paragraph.
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Figure 9: System- and segment-level accuracy results for the en-de and en-ru language pairs on the paragraph-level
WMT’22 MQM data for different numbers of k sentences per paragraph. In general, the system-level correlations
are relatively flat and the segment-level correlations increase as the number of sentences per paragraph increases.
BlonDE is not included because it only supports English.
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Year LP Sentences per Paragraph

1 2 3 4 5 6 7 8 9 10

2019 de-cs 16900 1032 95 12 1 0 0 0 0 0
2019 de-en 34756 16754 10896 7735 5976 4660 3947 3147 2730 2345
2019 de-fr 6700 173 5 0 0 0 0 0 0 0
2019 en-cs 27445 13241 8710 6152 4834 3865 3215 2607 2371 1967
2019 en-de 45131 21777 14311 10124 7932 6363 5274 4285 3906 3232
2019 en-fi 20618 9937 6557 4611 3628 2910 2419 1945 1799 1482
2019 en-gu 10151 4890 3229 2267 1774 1423 1221 964 884 722
2019 en-kk 12922 6221 4115 2888 2253 1813 1562 1223 1112 910
2019 en-lt 13217 6363 4219 2963 2319 1863 1603 1257 1137 944
2019 en-ru 22600 10902 7180 5069 3974 3185 2650 2137 1966 1633
2019 en-zh 26530 12810 8434 5944 4673 3758 3102 2520 2308 1904
2019 fi-en 20286 362 21 2 0 0 0 0 0 0
2019 fr-de 4000 87 3 0 0 0 0 0 0 0
2019 gu-en 14860 550 40 2 0 0 0 0 0 0
2019 kk-en 15763 705 77 10 0 0 0 0 0 0
2019 lt-en 16046 489 32 2 0 0 0 0 0 0
2019 ru-en 24247 785 83 10 1 0 0 0 0 0
2019 zh-en 50722 15164 9347 6774 5030 4087 3312 2714 2226 1797

2020 cs-en 9381 4322 2628 1797 1323 940 685 404 241 138
2020 de-en 12541 5825 3451 2422 1808 1220 927 652 507 378
2020 en-cs 34180 16371 10324 7358 5591 4501 3474 2749 2270 2035
2020 en-de 17393 8337 5253 3723 2859 2283 1729 1362 1138 1033
2020 en-iu 6145 3028 1990 1479 1152 937 801 693 600 538
2020 en-ja 21999 10672 6769 5036 3907 3093 2513 2109 1812 1635
2020 en-pl 18342 8891 5636 4192 3266 2569 2089 1756 1514 1377
2020 en-ru 19543 9494 6058 4433 3477 2750 2279 1847 1602 1468
2020 en-ta 9175 4439 2825 2100 1634 1301 1035 875 746 680
2020 en-zh 41965 20069 12656 9034 6843 5510 4260 3371 2782 2483
2020 iu-en 12172 75 0 0 0 0 0 0 0 0
2020 ja-en 9879 4710 3047 2103 1715 1321 1053 845 759 639
2020 km-en 6951 72 0 0 0 0 0 0 0 0
2020 pl-en 12435 6048 3871 2857 2184 1708 1445 1265 1030 844
2020 ps-en 7138 110 2 0 0 0 0 0 0 0
2020 ru-en 11244 5369 3408 2405 1832 1488 1179 952 785 604
2020 ta-en 7842 3762 2406 1723 1322 1065 847 694 572 473
2020 zh-en 30325 14567 9253 6674 5106 4078 3374 2811 2223 1824

Table 2: The number of paragraphs with the given number of sentences per paragraph from the direct assessment
data from WMT’19 and WMT’20. Each paragraph is required to a contiguous block of sentences that are rated by
the same rater.
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Dataset LP Sentences per Paragraph

1 2 3 4 5 6 7 8 9 10

WMT’21 en-de 7905 3825 2460 1800 1395 1140 870 765 660 585
WMT’21 en-ru 7905 3825 2460 1800 1395 1140 870 765 660 585
WMT’21 zh-en 9058 4340 2814 1974 1596 1190 994 770 658 644

WMT’22 en-de 18410 8932 5236 3486 3080 1610 1568 1470 1372 1330
WMT’22 en-ru 19725 9570 5610 3735 3300 1725 1680 1575 1470 1425
WMT’22 zh-en 28110 13005 7935 5655 4245 3285 2670 2160 1935 1710

Table 3: The number of paragraphs with the given number of sentences per paragraph from the MQM data from
WMT’21 and WMT’22. Each paragraph is required to a contiguous block of sentences that are rated by the same
rater.

Dataset Sentences per Paragraph

1 2 3 4 5 6 7 8 9 10

WMT’19 DA 2 (0%) 3 (0%) 4 (0%) 15 (0%) 48 (0%) 196 (1%) 440 (2%) 702 (3%) 1349 (7%) 1944 (11%)
WMT’20 DA 4 (0%) 179 (0%) 667 (1%) 1148 (2%) 1598 (4%) 2222 (6%) 2879 (10%) 3389 (15%) 4041 (22%) 4688 (29%)
WMT’21 MQM 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (0%) 23 (1%) 103 (4%) 245 (11%) 295 (15%) 488 (27%)
WMT’22 MQM 0 (0%) 0 (0%) 6 (0%) 11 (0%) 56 (1%) 74 (1%) 110 (2%) 202 (4%) 266 (6%) 450 (10%)

Table 4: The number (and percent) of paragraphs for which the number of SPM tokens in the reference and
hypothesis combined is larger than the maximum allowable input length by our metric, 1024. If the input is too
long, it is truncated.
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Figure 10: The system- and segment-level correlation results when using Pearson correlation follow very simi-
lar trends to those that use pairwise accuracy. The segment-level Pearson uses the “no grouping” variant from
Deutsch et al. (2023) to avoid the NaN problem that happens with the “group-by-item” variant, which was used in
combination with pairwise accuracy in the main body of the paper.
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Figure 11: The correlation between metric scores for
directly scoring paragraphs and averaging the score of
evaluating the k sentences per paragraph independently
on the WMT’22 MQM data.


