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Abstract

This report describes the Minimum Bayes
Risk Quality Estimation (MBR-QE) submis-
sion to the Workshop on Machine Transla-
tion’s 2023 Metrics Shared Task. MBR decod-
ing with neural utility metrics like BLEURT is
known to be effective in generating high qual-
ity machine translations. We use the underly-
ing technique of MBR decoding and develop
an MBR based reference-free (quality estima-
tion) metric. Our method uses an evaluator ma-
chine translation system and a reference-based
utility metric (specifically BLEURT and Met-
ricX) to calculate a quality estimation score of
a model’s output. We report results related to
comparing different MBR configurations and
utility metrics.

1 Introduction

The task of quality estimation (QE) is to assign a
sentence- or word-level quality score to a machine
translation (MT) output without the use of a ref-
erence translation. In this paper, we describe the
methodology used in our sentence-level QE met-
ric submission to the 2023 Workshop on Machine
Translation’s Metrics Shared Task.

Minimum Bayes Risk (MBR) decoding has been
widely used in machine translation to address the
limitation of MAP decoding (Kumar and Byrne,
2004; Eikema and Aziz, 2020; Müller and Sen-
nrich, 2021). Freitag et al. (2021b) showed apply-
ing MBR decoding using BLEURT (Sellam et al.,
2020) as a utility function can out-perform beam
search decoding.

MBR decoding can be viewed as a method for
reranking candidate outputs from an MT system. It
first samples a set of hypothesis translations from
the model, scores each hypothesis against a set of
pseudo-references (generally, the same set of sam-
ple hypotheses) with a utility metric, then selects
the hypothesis with the highest average score to be
the final translation.

Central to MBR is assigning a quality score to
a hypothesis translation without the use of a refer-
ence. Because this decoding procedure has been
successful in improving the quality of translations
from an MT system, in this work, we explore how
MBR could be repurposed as a QE metric.

Our proposed metric uses an MT system in con-
junction with a utility metric to assign a quality
score to a translation without using a reference.
The metric assigns a score to a hypothesis trans-
lation by using the utility metric to evaluate the
hypothesis against a set of pseudo-references that
are sampled from the MT model.

In this work, we experiment with creating a met-
ric that uses different MT systems, utility functions,
and different pseudo-reference pool sizes. Our
experiments demonstrate that (1) a better utility
function results in better MBR-QE scores, (2) the
choice of MT system can have significant impact
on QE metric performance, and (3) the size of the
pseudo-reference pool does not have a significant
impact on overall metric quality.

Based on our experiments, we chose our primary
MBR-QE submission to be an in-house encoder-
decoder model with MetricX (Freitag et al., 2022)
as the utility function with a pseudo-reference pool
size of 256.

2 Metric Descriptions

MBR decoding has two components: an MT
system and a utility function. The MT model
Pmodel(y|x) estimates the probability of target seg-
ments y given a source segment x. The utility func-
tion estimates the quality of a translation h given
a reference translation r. The best hypothesis is
selected using the expected utility with respect to a
finite sample generated by the model. The under-
lying assumption is that the model provides good
approximation for the true distribution of human
translations.

We adopt that assumption to develop an MBR-
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based quality estimation metric. The MBR-QE
metric uses an MT system P to generate the set
of pseudo-references, denoted R̂. Then, the utility
function defines the quality of a translation h given
R̂ as the average score over all of R̂:

MBR-QE(h) =
1

|R̂|

∑
r̂εR̂

u(h, r̂) (1)

This methodology has multiple potential pitfalls.
First, because the distribution P is used to substi-
tute for the distribution of human translations, any
significant divergence between these two distribu-
tions will lead to the QE score becoming inconsis-
tent because the pool of pseudo-references will not
resemble human references. This can be mitigated
by using a high quality MT system. Arguably, the
MT system should have better performance com-
pared to the MT models that are being evaluated.

Second, our QE metric is dependent on the qual-
ity of the utility function. If it has limitations
or biases, they will affect the predicted quality
scores and introduce inconsistencies between the
QE score and ground-truth human quality scores.

We next discuss the experimental setup for ana-
lyzing our proposed QE metric.

3 Experimental Setup

3.1 Pseudo-Reference Generation

Our MBR-QE metric relies on the assumption
that if the MT system that generates the pseudo-
references can be used as an approximation for
the distribution of human translations, then the ag-
gregated utility metric score can be used a quality
estimate for hypothesis. Therefore, the MT model
and method for generating pseudo-references is
critical for the effectiveness of this metric.

MT Systems. The MT system used for our
shared task submission is an in-house encoder-
decoder translation model that is similar to the
Google Translate production model. In this re-
port, we also experiment with generating pseudo-
references from the PaLM 2 (Bison) large language
model (Anil et al., 2023) using 5-shot prompting.

Sampling Method. We generate pseudo-
references from the MT system using epsilon
sampling (Hewitt et al., 2022; Freitag et al., 2023)
with p = 0.02 and sampling temperature 1.0.
We experiment with using a different number of
pseudo-references.

3.2 Utility Functions

Freitag et al. (2021b) showed that MBR decoding
works well with neural evaluation metrics. We
experiment with 2 neural metrics as the utility func-
tion in MBR-QE.

BLEURT v0.2 (Sellam et al., 2020; Pu et al.,
2021): BLEURT v0.2 is a learned regression-based
metric that is trained to predict the quality of a
translation given a reference. It is pre-initialized
with RemBERT (Chung et al., 2020) and finetuned
using a combination of WMT human evaluation
data from 2015-2019 and synthetic data.

MetricX (Freitag et al., 2022): MetricX is a
learned regression-based metric that is based on
mT5 (Xue et al., 2021). It is trained on a combina-
tion of direct assessment and MQM (Lommel et al.,
2014; Freitag et al., 2021a) data that was collected
by WMT. We use the reference-based version that
uses mT5-XXL.

3.3 Meta-Evaluation

We use four different correlations to calculate the
metrics’ agreements with human judgments. At
the system-level, we use pairwise accuracy (Kocmi
et al., 2021) and Pearson’s r. System-level Pear-
son’s r captures how strong the linear relationship
is between the metric and human scores for MT
systems. Pairwise accuracy evaluates a metric’s
ranking of MT systems by calculating the propor-
tion of all possible pairs of MT systems that are
ranked the same by the metric and human scores.

At the segment-level, we use group-by-item
pairwise accuracy with tie calibration (Deutsch
et al., 2023) and no-grouping Pearson’s r. The no-
grouping Pearson’s r calculates the linear relation-
ship between the metric and human scores across
translations from every system and document. The
group-by-item pairwise accuracy calculates the pro-
portion of all possible pairs of translations for the
same input segment that are ranked the same or tied
by the metric and human. Then the accuracy scores
are averaged over all possible input segments. We
use tie calibration (Deutsch et al., 2023) that auto-
matically introduces ties into metric scores based
on a threshold. This tie calibration is required as
regression-based metrics rarely predict ties.

Our experiments are performed using the
WMT’22 English-to-German (en-de) and Chinese-
to-English (zh-en) MQM ratings (Freitag et al.,
2022). These datasets are commonly used for meta-
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evaluation and are the latest available from the Met-
rics Shared Task. We did not evaluate using en-ru
since it is not included as a language pair in the
WMT’23 evaluation.

4 Experimental Results

The main experimental results are shown in Ta-
bles 1 and 2. Table 1 compares the two utility
functions with various pseudo-reference pool sizes
when using the in-house MT system, and Table 2
does the same but for the PaLM 2-based system.

Comparing Utility Functions. For both MT sys-
tems and all pseudo-reference pool sizes, the MBR-
QE metric that uses MetricX as a utility function in
general has higher correlations than when BLEURT
is used. This result is expected since MetricX was
the best performing metric in the WMT’22 eval-
uation. This is evidence that the quality of the
utility function is important for the quality of the
MBR-QE score.

Comparing MT Systems. When comparing
whether the encoder-decoder MT system or PaLM
2 is used to generate the pool of pseudo-references,
there is no clear winner between the two. The
MBR-QE score has a higher correlation at the
segment-level with the encoder-decoder model, but
the correlations are higher at the system-level with
PaLM 2. It is not clear why this is the case.

Pseudo-Reference Pool Size. Overall, the corre-
lations are surprisingly stable for each of the dif-
ferent numbers of pseudo-references. Most of the
differences comes between pairwise accuracy at the
system-level, but this correlation can be sensitive;
there are not many system pairs, so if one or two
system rankings change, it can have a large impact
on the overall accuracy. In the future, we could
explore decreasing the pseudo-reference pool size
even further to understand its impact on the overall
MBR-QE metric quality.

Comparing to Other Metrics. Table 3 shows
the comparion between our submission, denoted
MBR-QE, to other QE metrics that were the top-
performing QE metrics in the WMT’22 Metrics
Shared Task, COMETKIWI (Kepler et al., 2019; Rei
et al., 2022b) and UNITE-SRC (Wan et al., 2022).
The table additionally contains results for the best
reference-based metrics MetricX and COMET-22
(Rei et al., 2022a).

Compared to the QE metrics, MBR-QE in gen-
eral has the best-performance across most evalua-
tion settings, demonstrating that it is a state-of-the-
art QE metric. In some cases, it even out-performs
the reference-based metrics, namely in the system-
level Pearson correlation.

MBR-QE leverages MetricX as the utility func-
tion. MBR-QE still under-performs with respect to
MetricX, demonstrating that the human references
are still valuable and that the pseudo-references
do not perfectly match the distribution of human
translations, which is expected given that the MT
system is not perfect. However, the gap in perfor-
mance between the two metrics is relatively small
in some settings.

4.1 Submission Summary

Both of our submissions to the Metrics Shared
task use the in-house MT system to generate 256
pseudo-references with epsilon sampling (p = 0.02
and temperature 1.0). Our primary submission uses
MetricX as the utility function, and the contrastive
submission uses BLEURT.

5 Related Work

Incorporating evaluation metrics into reranking the
outputs from MT systems has been very successful.
For example, the Freitag et al. (2021b) showed
that reranking translations with BLEURT as part
of MBR produced higher-quality translations. This
work served as the inspiration for our QE metric
submission.

Research on quality estimation focuses on pre-
dicting word- and sentence-level quality scores
(Zerva et al., 2022). The most successful
approaches to predicting sentence-level scores
are learned regression-based metrics that are
trained to predict ground-truth quality scores, like
COMETKIWI (Kepler et al., 2019; Rei et al., 2022b)
or UNITE-SRC (Wan et al., 2022). Our metric is
quite different from these approaches in that it is
not directly trained to predict quality scores, but
rather it leverages a reference-based metric com-
bined with an MT system to score a translation. To
the best of our knowledge, ours is the first metric
that uses MBR to build a QE metric.

6 Conclusion

In this report, we proposed a new QE metric called
MBR-QE that repurposes an MT system in combi-
nation with MBR to score a translation without ac-
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Utility Pseudo-Ref SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
Metric Pool Size en-de zh-en en-de zh-en en-de zh-en en-de zh-en

BLEURT 64 0.5772 0.5142 0.4750 0.4628 0.7692 0.7802 0.6773 0.8907
128 0.5777 0.5145 0.4752 0.4631 0.7692 0.7802 0.6749 0.8899
256 0.5782 0.5151 0.4747 0.4626 0.7692 0.7692 0.6751 0.8901

MetricX 64 0.5986 0.5292 0.4891 0.4513 0.7564 0.8132 0.8654 0.8654
128 0.5944 0.5300 0.4873 0.4519 0.7821 0.8132 0.8391 0.9579
256 0.5979 0.5306 0.4897 0.4524 0.7692 0.8132 0.8647 0.9586

Table 1: MBR-QE correlations on the WMT’22 MQM data comparing when BLEURT and MetricX are used as
utility functions with different pseudo-reference pool sizes are sampled from the in-house encoder-decoder model.

Utility Pseudo-Ref SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
Metric Pool Size en-de zh-en en-de zh-en en-de zh-en en-de zh-en

BLEURT 64 0.5614 0.4824 0.4261 0.4153 0.8077 0.7802 0.7636 0.9253
128 0.5612 0.4827 0.4246 0.4143 0.8077 0.7802 0.7631 0.9250
256 0.5616 0.4831 0.4249 0.4152 0.8077 0.7692 0.7635 0.9249

MetricX 64 0.5764 0.5022 0.4574 0.4259 0.7949 0.8571 0.9154 0.9846
128 0.5737 0.5000 0.4621 0.4339 0.8333 0.8242 0.9145 0.9844
256 0.5767 0.5021 0.4626 0.4265 0.8077 0.8571 0.9212 0.9845

Table 2: MBR-QE correlations on the WMT’22 MQM data comparing when BLEURT and MetricX are used as
utility functions with different pseudo-reference pool sizes are sampled from using PaLM 2 as a translation system
with 5-shot propmting.

SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
Metric en-de zh-en en-de zh-en en-de zh-en en-de zh-en

Quality Estimation (Reference-Free) Metrics
MBR-QE 0.598 0.531 0.490 0.452 0.769 0.813 0.865 0.959
COMETKIWI 0.572 0.509 0.432 0.509 0.692 0.758 0.674 0.866
UNITE-SRC 0.582 0.508 0.397 0.404 0.742 0.708 0.509 0.874

Reference-Based Metrics
MetricX 0.605 0.544 0.549 0.581 0.829 0.867 0.847 0.920
COMET-22 0.594 0.536 0.512 0.585 0.790 0.886 0.771 0.942

Table 3: A comparison of our submission, denoted MBR-QE (scoring translations with MetricX against trans-
lations generated by our in-house MT system) to other QE metrics (top) and reference-based metrics (bottom).
MBR-QE is overall the best-performing metric amongst the QE metrics, and it even improves over the reference-
based metrics in system-level Pearson.



810

cess to a reference. Our experiments demonstrated
that the choice of MBR utility function is important,
the choice of MT system can impact downstream
metric correlations, and the pseudo-reference pool
size does not have a significant impact on results.
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