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Abstract

We present the results from the 9th round of
the WMT shared task on MT Automatic Post-
Editing, which consists of automatically cor-
recting the output of a “black-box” machine
translation system by learning from human cor-
rections. Like last year, the task focused on
English→Marathi, with data coming from mul-
tiple domains (healthcare, tourism, and gen-
eral/news). Despite the consistent task frame-
work, this year’s data proved to be extremely
challenging. As a matter of fact, none of the of-
ficial submissions from the participating teams
succeeded in improving the quality of the al-
ready high-level initial translations (with base-
line TER and BLEU scores of 26.6 and 70.66,
respectively). Only one run, accepted as a
“late” submission, achieved automatic evalu-
ation scores that exceeded the baseline.

1 Introduction

This paper presents the results of the 9th round
of the WMT task on MT Automatic Post-Editing
(APE). The task involves the automatic correc-
tion of the output generated by a “black-box” ma-
chine translation system by learning from human-
revised machine-translated output supplied as train-
ing material. The overall task formulation (see
Section 2) remained consistent with that of all pre-
vious rounds. In this formulation, the challenge
revolves around fixing errors in English documents
that have been automatically translated by a state-
of-the-art, non-domain-adapted neural MT (NMT)
system unknown to the participants. In continuity
with last year’s round, the evaluation focused on
English→Marathi,1 with training/dev/test data se-
lected from a mix of domains, namely- healthcare,
tourism, and general/news (see Section 3).

Three teams participated in the task by submit-
ting a total of four runs for the final evaluation (see

1Marathi is an Indo-Aryan language predominantly spoken
by Marathi people in the Indian state of Maharashtra.

Section 4).2 However, while only two out of the
three participants were able to submit their runs on
time, the one remaining submission arrived with a
two-month delay. This led us to categorize it as a
late (therefore, unofficial) submission for the sake
of fairness to the other participants.

For all the teams, the task posed significant chal-
lenges primarily due to the high average quality of
the initial translations slated for post-editing (26.6
TER / 70.66 BLEU / 79.78 chrF). This challenge
was compounded by the substantial imbalance in
distribution between near-perfect translations (ap-
proximately 40% of the total) and those necessitat-
ing extensive revisions (approximately 20%). As
a consequence, none of the official runs was able
to improve over the baseline in terms of the task’s
automatic evaluation metrics (Section 5.1), with
the best run achieving results (27.73 TER / 69.03
BLEU / 78.64 chrF) that highlight a slight quality
degradation compared to the original, untouched
NMT outputs that represent our baseline. For the
sake of completeness, we report that the late sub-
mission achieved a slight improvement over the
baseline, attested by TER, BLEU, and chrF scores
of 25.74, 71.27, and 80.41, respectively. The re-
sults computed by means of automatic evaluation
metrics were also confirmed by our human evalua-
tion based on direct assessment (Section 5.2).

2 Task Description

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee et al.,
2015), from the application point of view, the task
is motivated by its possible uses to:

• Enhance MT output by harnessing informa-
tion that is not available to the decoder or by
conducting deeper text analysis, which may

2A fourth participant withdrew the submitted run, which
was affected by major errors in the generated outputs.
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be prohibitively expensive during the decod-
ing phase.

• Address systematic errors stemming from an
MT system whose decoding process is inac-
cessible for focused modifications.

• Provide professional translators with im-
proved MT output quality, thereby reducing
the need for subsequent human post-editing.

• Tailor the output of a general-purpose MT sys-
tem to align with the lexicon and style require-
ments of a specific application domain.

This 9th round of the WMT APE shared task
kept the same overall evaluation setting of the pre-
vious eight rounds. Specifically, the participating
systems had to automatically correct the output of
an unknown “black-box” MT system (a generic
NMT system not adapted to the target domain)
by learning from training data containing human
revisions of translations produced by the same sys-
tem. For the second year in a row, the selected
language pair was English-Marathi (with Marathi
as the target language for post-editing). Training,
development and test data were drawn from the
following three domains: healthcare, tourism, and
general/news.

3 Data, Metrics, Baseline

3.1 Data
In continuity with last year, the selected language
pair is English-Marathi. Marathi is one of the most
spoken Indian languages, with approximately 83
million native speakers and 16 million speakers
as a second/third language.3 Marathi is a known
agglutinative language and presents various chal-
lenges to machine translation compared to its other
Indian counterparts (Khatri et al., 2021; Banerjee
et al., 2021). Moreover, the English-Marathi lan-
guage pair is considered low-resource compared to
English-Hindi/Bengali/Malayalam (Ramesh et al.,
2022), despite having more native speakers world-
wide.

The training and development datasets supplied
to the participants remain consistent with those
employed in the 2022 iteration of the task. These
datasets consist of 18,000 and 1,000 (source, target,
human post-edit) triplets, wherein:

3Ethnologue-2022 - Ethnologue has been an active re-
search project since 1951 which maintains online archives
of recognized languages list, and their statistics.

• The source (SRC) is an English sentence;

• The target (TGT) is a Marathi translation
of the source produced by a generic, black-
box NMT system unknown to participants.
This multilingual NMT system (Ramesh et al.,
2022) is based on the Transformer architec-
ture (Vaswani et al., 2017) and is trained on
a total of 49 million sentence pairs where the
En-Mr parallel corpus is 4.5 million sentence
pairs. This parallel data is generic and covers
many domains, including the three domains
covered by the APE 2023 test set, namely-
healthcare, tourism/culture and general/news.

• The human post-edit (PE) is a manually re-
vised version of the target, which was pro-
duced by native Marathi speakers.

We provide the same corpus of artificially gen-
erated data as additional training material from
the last round. It consists of 2 million triplets de-
rived from the Anuvaad en-mr parallel corpus.4

The Anuvaad parallel corpus consists of data for
12 en-X language pairs, where X comprises 12
Indian languages, including Marathi. The English-
Marathi data consists of 2.5 million parallel sen-
tences. Specifically, the source, target, post-edit in-
stances of this synthetic corpus are respectively ob-
tained by combining: i) the original English source
sentence from the Anuvaad corpus, ii) its automatic
translation into Marathi,5 iii) the original Marathi
target sentence from the Anuvaad corpus.

Test data consisted of 1,000 (source, target)
pairs, similar in nature to the corresponding el-
ements in the train/dev sets (i.e., same domains,
same NMT system). The human post-edits of the
target elements were left apart to measure APE
systems’ performance both with automatic metrics
(TER, BLEU, chrF) and via human evaluation.

3.2 Metrics

The participating systems were evaluated both by
means of automatic metrics and manually. Auto-
matic evaluation (Section 5.1) was carried out after
tokenizing the data with sacremoses6, by comput-
ing the distance between the automatic post-edits
produced by each system for the target elements of

4https://github.com/project-anuvaad/
anuvaad-parallel-corpus

5from IndicTrans En-X Model (Ramesh et al., 2022)
6https://pypi.org/project/sacremoses/

https://www.ethnologue.com/guides/ethnologue200
https://github.com/project-anuvaad/anuvaad-parallel-corpus
https://github.com/project-anuvaad/anuvaad-parallel-corpus
https://pypi.org/project/sacremoses/
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the test set, and the human corrections of the same
test items.

The official systems’ ranking is based on the av-
erage (case-sensitive) TER (Snover et al., 2006)
calculated on the test set by using the TERcom7

software: lower average TER scores correspond to
higher ranks. As additional performance indicators,
BLEU (Papineni et al., 2002) and chrF (Popović,
2015) were computed8. The human evaluation
(Section 5.2) was conducted via source-based di-
rect human assessment (Graham et al., 2013a).

3.3 Baseline

The official baseline results were the
TER/BLEU/chrF scores calculated by com-
paring the raw MT output with human post-edits.
This corresponds to the score achieved by a
“do-nothing” APE system that leaves all the test
targets unmodified.

4 Submissions

As shown in Table 1, this year, we received sub-
missions from three teams, one of which submitted
their run with a two-month delay that motivates
its categorization as a late submission9. The main
characteristics of the participating systems are sum-
marized below.

Korea Advanced Institute of Science and Tech-
nology (kaistai). This team participated with a
system inspired by the recent surge of large lan-
guage models (LLMs) that have been successfully
applied to a variety of language generation tasks.
Their goal was to verify whether LLMs could per-
form the APE task through prompting. To this
aim, they used gpt-3.5-turbo with specific prompts
designed to generate either (a) post-edits or (b)
post-edits along with the rationales behind them.
While the results of preliminary evaluations based
on COMET suggested the viability of the approach
for medium-/high-resource language pairs, they
also highlighted that the often radical changes pro-
duced by LLMs can potentially be penalized by
more strict reference-based evaluations based on
BLEU, TER, or chrF.

7http://www.cs.umd.edu/~snover/tercom/
8chrF was computed using SacreBLEU https://pypi.

org/project/sacrebleu/(version 2.3.0)
9A fourth participating team retracted their submitted run

due to errors in the generated outputs that significantly affected
their final results.

Korea University (KU_UPs). The participation
of this team was centred on data filtering tech-
niques. With a focus on removing potentially
harmful material from a model training perspective,
the proposed method concentrates on eliminating
the two extremes of the training data distribution:
the (near-)perfect MT outputs on one side, and
those that require complete rewriting on the other.
According to preliminary experiments carried out
on previous APE datasets (WMT2020/2021/2022),
data selection driven by TER and COMET yields
better performance when the outlier instances re-
quiring excessive post-editing are removed from
the training. On this basis, the submitted APE sys-
tem was built by training the multilingual M2M100-
418M model (Fan et al., 2021).

Huawei Translation Service Center and Xiamen
University School of Informatics (HW_TSC). –
late submission – This team participated with a
Transformer-based system pre-trained on the pro-
vided synthetic APE data and then fine-tuned on
the real APE data augmented via automatic transla-
tion (with Google Translate run on the post-edits in
the training set) and by integrating En-Mr parallel
sentences from FLORES-200 (NLLB Team et al.,
2022). R-Drop (Liang et al., 2021), which regular-
izes the training inconsistency induced by dropout,
is used to mitigate overfitting during the training
phase. A sentence-level Quality Estimation system
is also used to select the most appropriate output,
choosing between the original translation and the
corresponding APE-generated output.

5 Results

5.1 Automatic Evaluation

Automatic evaluation results are shown in Table 2.
The submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as a reference, which
is the APE task’s primary evaluation metric. To
provide a broader view of systems’ performance,
BLEU and chrF results computed using the same
references are also reported.

As can be seen from the table, the three rankings
coherently show that the best official submission
(by the KU_UPS team, which achieved scores of
27.73 TER, 69.03 BLEU, and 78.64 chrF) outper-
forms the others. None of them, however, was
able to improve the quality of the original transla-
tions (i.e. the do nothing baseline), differently from

http://www.cs.umd.edu/~snover/tercom/
https://pypi.org/project/sacrebleu/
https://pypi.org/project/sacrebleu/
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ID Participating team
kaistai Korea Advanced Institute of Science and Technology, South Korea
KU_UPs Korea University, South Korea (Moon et al., 2023)
HW_TSC Huawei Translation Service Center & Xiamen University School of Informatics, China (Yu et al., 2023)

Table 1: Participants in the WMT23 Automatic Post-Editing task.

TER BLEU CHRF

en-mr HW-TSC_HW_1_PRIMARY.txt† 25.74 71.27 80.41
baseline (MT) 26.60 70.66 79.78
KU_UPs-filtered4-PRIMARY.tsv 27.73 69.03 78.64
kaistai_prompt-wo-cot_contrastive 54.59 40.97 67.24
kaistai_prompt-w-cot_primary 58.55 31.63 61.61

Table 2: NEWResults for the WMT23 APE English-Marathi shared task – average TER (↓), BLEU (↑), chrF (↑).
Gray† indicates a late submission, which was received after the conclusion of this year’s human evaluation and,
consequently, is not discussed in Section 5.2.

the slightly better outputs of the late submission
by HW_TSC. This prompts further analyses to ex-
plore the underlying reasons for this unexpected
outcome. We do this in two ways: 1) by giving a
closer look at systems’ behaviour (Section 5.1.1),
in order to spot trends in their post-editing strate-
gies; 2) by analysing the task’s inherent level of
difficulty (Section 5.1.2) in terms of the possibility
to learn valuable correction patterns from the train-
ing data and effectively apply them to the supplied
test set.

5.1.1 Analysis: Systems’ Behaviour

Modified, improved and deteriorated sentences
To gain a first insight into the behaviour of partic-
ipating systems, Table 3 provides an overview of
each submitted run, detailing the number of modi-
fied, improved, and deteriorated sentences, along
with the systems’ overall precision (i.e., the ratio
of improved sentences to the total count of modi-
fied instances where improvement or deterioration
is observed). It’s worth noting that each system
has modified a much higher number of sentences
than the combined total of improved and deterio-
rated ones. This discrepancy accounts for modified
sentences in which the corrections do not result in
any variations in TER. This “grey area”, where the
automatic assessment of quality improvement or
degradation is not feasible, underscores the impor-
tance of including human evaluation for a compre-
hensive assessment of systems’ performance (see
Section 5.2). As can be seen from the table, and in
line with the findings from previous rounds, con-
servative post-editing seems to yield better results
compared to the adoption of aggressive strategies.

The difference between the top-ranked system and
the other submitted runs is indeed evident when we
look at the proportion of modified test sentences
(37.4%10 vs ≥ 93.1%), indicating that limiting the
applied edits to the strictly necessary ones remains
the main challenge to achieve significant quality
improvements. While this outcome may be influ-
enced by the reference-based automatic evaluation
framework employed (as it penalizes correct edit
operations that deviate from those presented in the
reference), it is noteworthy that the results of the
manual evaluation, as detailed in Section 5.2, align
with this observation.

Another observation is that precision is certainly
the other key factor in achieving good APE results.
Besides being much more conservative, the best
submission stems, in fact, for a higher precision in
selecting the edit operations to be applied (48.1111

vs ≤ 21.00). Also, this finding aligns with the out-
comes of previous rounds, in which the winning
system consistently exhibited the highest precision.
Notably, the precision of this year’s official submis-
sions (averaging 29.62) is significantly lower than
the values observed in previous rounds (e.g., 69.0,
53.96, 69.49 for the top-ranked system in 2020,
2021, and 2022, respectively).12 This difference in
precision may well explain why none of them were
able to improve upon the baseline results.

Edit operations Further indications about the
system’s behaviour can be drawn from a more fine-

10Which drops to 24.4% for the late submission.
11Further increased to 51.89 for the late submission.
12This holds even if we include the late submission in the

computation, with an average precision that slightly grows to
35.19.
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Systems Modified Improved Deteriorated Prec.
HW-TSC_HW_1_PRIMARY.txt† 244 (24.4%) 110 (45.08%) 102 (41.8%) 51.89
KU_UPs-filtered4-PRIMARY.tsv 374 (37.4%) 153 (40.9%) 165 (44.11%) 48.11
kaistai_prompt-wo-cot_contrastive 931 (93.1%) 187 (20.08%) 709 (76.15%) 20.87
kaistai_prompt-w-cot_primary 989 (98.9%) 193 (19.51%) 777 (78.56%) 19.89
Average 76.46% 26.83% 66.27% 29.62

Table 3: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted
to the APE 2023 English-Marathi subtask. The “Prec.” column shows systems’ precision as the ratio between the
number of improved sentences and the total number of modified instances for which improvement or deterioration
can be assessed in terms of TER variations. Average values considering only the three official submissions.

Figure 1: Distribution of edit operations (insertions,
deletions, substitutions and shifts) performed by the
three primary submissions to the WMT23 APE English-
Marathi shared task.

grained analysis of the distribution of their edit
operations (insertions, deletions, substitutions, and
shifts). Such distribution is obtained by comput-
ing the TER between the original MT output and
the output of each primary submission, taken as
a reference. As shown in Figure 1, although the
overall behaviour of the systems is similar, some
differences are noticeable. Indeed, in line with pre-
vious rounds, they all exhibit a high percentage of
deletions, followed by insertions, substitutions and
shifts. However, for the best official submission,13

the percentage of the latter two types of operations
is minimal (2.9% substitutions and 3.67% shifts)
and balanced by a less skewed distribution of inser-
tions (30.52%) and deletions (62.91%). Especially
the comparatively higher proportion of more “radi-
cal” (i.e., structural) modifications applied by the
worse system (13.43% shifts), which again sug-
gests its lower conservativeness, can account for its
lower automatic evaluation scores.

13Note, however, that the same consideration also applies
for the late submission.

5.1.2 Analysis: Complexity Indicators

While systems’ behaviour is influenced by imple-
mentation and architectural choices on the one
hand, it also depends on the data used for training,
development, and evaluation on the other. There-
fore, looking at the intrinsic difficulty of the task
from a data perspective is also crucial for interpret-
ing the observed performance of the systems. To
delve into this aspect, we concentrate on the possi-
bility of learning useful correction patterns during
training and successfully applying them at test time.
We analyse such a possibility in terms of three in-
dicators, namely: i) repetition rate, ii) MT quality,
and iii) TER distribution in the test set. For the sake
of comparison across the nine rounds of the APE
task (2015–2023), Table 4 reports, for each dataset,
information about the first two aspects. The third
one, instead, will be discussed by referring to Fig-
ure 2.

Repetition Rate The repetition rate (RR), mea-
sures the repetitiveness inside a text by looking
at the rate of non-singleton n-gram types (n=1...4)
and combining them using the geometric mean.
Higher RR values indicate greater text repetitive-
ness, which may imply an increased likelihood of
learning correction patterns from the training set
that are also applicable to the test set. As shown
in the last row of Table 4, the RR values for the
SRC, TGT, and PE elements (averaged across the
training, development, and test sets) are relatively
low. Furthermore, upon closer examination, Ta-
ble 5 reveals a non-negligible difference between
the RR values of the SRC, TGT, and PE elements
in the training set compared to the corresponding
values calculated on the test set. This difference
is particularly pronounced for the PE sentences,
where the RR is more than two times higher. Al-
though the reported RR values can be considered
indicative of a challenging task, it is important to
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Lang. Domain MT type RR_src RR_tgt RR_pe Basel. BLEU Basel. TER δ TER
2015 en-es News PBSMT 2.9 3.31 3.08 n/a 23.84 +0.31
2016 en-de IT PBSMT 6.62 8.84 8.24 62.11 24.76 -3.24
2017 en-de IT PBSMT 7.22 9.53 8.95 62.49 24.48 -4.88
2017 de-en Medical PBSMT 5.22 6.84 6.29 79.54 15.55 -0.26
2018 en-de IT PBSMT 7.14 9.47 8.93 62.99 24.24 -6.24
2018 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.38
2019 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.78
2019 en-ru IT NMT 18.25 14.78 13.24 76.20 16.16 +0.43
2020 en-de Wiki NMT 0.65 0.82 0.66 50.21 31.56 -11.35
2020 en-zh Wiki NMT 0.81 1.27 1.2 23.12 59.49 -12.13
2021 en-de Wiki NMT 0.73 0.78 0.76 71.07 18.05 -0.77
2022 en-mr health/tourism/news NMT 1.46 0.89 0.72 67.55 20.28 -3.49
2023 en-mr health/tourism/news NMT 1.85 1.24 1.12 70.66 26.60 +1.13

Table 4: Basic information about the APE shared task data released since 2015- languages, domain, type of MT
technology, repetition rate and initial translation quality (TER/BLEU of TGT). The last column (δ TER) indicates,
for each evaluation round, the difference in TER between the baseline (i.e., the “do-nothing” system) and the
top-ranked official submission.

Data RR
Train_src 1.55
Train_mt 1.03
Train_pe 0.81
Dev_src 1.4
Dev_mt 0.8
Dev_pe 0.64
Test_src 2.6
Test_mt 1.9
Test_pe 1.91

Table 5: Repetition Rate (RR) values of source (src),
target translation (mt) and post-edited translation (pe)
elements in the APE 2023 training, development and
test sets.

note that the top-ranked submissions in previous
rounds (e.g. in 2022 and 2020) were able to achieve
significant improvements over the baseline despite
similar RR values (with δ TER values of −3.49 and
−12.13, respectively). This variability reinforces
the findings from previous rounds, emphasizing
that RR alone is insufficient as a complexity in-
dicator. Rather, it underscores the significance of
examining its interaction with other indicators and
its potential cumulative impact on them.

MT Quality As emphasized by the findings from
all previous rounds of the task, a more reliable in-
dicator of complexity is the quality of the machine-
translated (TGT) texts that require correction. We
assess this quality by computing TER (↓) and
BLEU (↑) scores (shown in the Basel. TER/BLEU
columns in Table 4), using the human post-edits as
references.14 In principle, higher-quality original

14Scores for the newly introduced chrF metric are not in-
cluded in the table, as they would not be comparable with
values from previous rounds where chrF was not considered.

translations leave less room for improvement to
APE systems, which have at the same time fewer
errors to learn from during training and fewer cor-
rections to make at test time. On one side, in-
deed, training on good (or near-perfect) automatic
translations can significantly reduce the number
of learned correction patterns. On the other side,
testing on similarly high-quality translations can
have two effects: i) it reduces the number of cor-
rections required and the applicability of learned
patterns, and ii) it increases the risk of introducing
errors, especially when post-editing near-perfect
TGTs. This observation is supported by the strong
correlation (>0.83) between the initial MT quality
(“Basel. TER” in Table 4) and the TER difference
between the baseline and the top-ranked submis-
sion (“δ TER” in Table 4) previously reported in the
analysis of the 2015-2022 rounds by Bhattacharyya
et al. (2022).

Looking at the baseline TER score, this year’s
test data look for a comparatively lower difficulty
for APE systems compared to most of the previ-
ous rounds, which in only 2 cases (i.e., for the two
languages covered in 2020) appear to be less chal-
lenging. Interestingly, however, when looking at
the baseline BLEU score, the difficulty appears to
be higher, with up to 6 previous test sets featuring
translations of lower quality (hence easier to han-
dle) compared to this year. The reasons for such dif-
ferences deserve further investigation, which might
shed light on the fact that, contrary to expectations,
MT quality is less indicative of this year’s task
difficulty compared to previous rounds15.

15Considering this year’s data, in fact, the correlation be-
tween “Basel. TER” and “δ TER” in Table 4 drops from >0.83
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TER distribution in the test set Complementary
to repetition rate and MT quality, the TER distribu-
tion (computed against human references) for the
translations present in the test provides valuable
insights for interpreting the results of this year’s
round of the task. While TER distribution and MT
quality may appear to be closely related, it’s im-
portant to note that, even at similar overall quality
levels, more or less skewed distributions can create
distinct testing conditions. Indeed, as shown by pre-
vious analyses (Bojar et al., 2017; Chatterjee et al.,
2018, 2019, 2020; Akhbardeh et al., 2021; Bhat-
tacharyya et al., 2022), more challenging rounds
of the task were typically characterized by TER
distributions heavily skewed toward lower values
(i.e., a larger percentage of test items having a TER
between 0 and 10).

On one side, a higher proportion of (near-
)perfect test instances, requiring minimal or no
corrections, increases the likelihood that APE sys-
tems will make unnecessary edits, which will be
penalized by automatic evaluation metrics. Con-
versely, less skewed distributions may be easier
to handle, as they provide automatic systems with
more opportunities for improvement, with a larger
number of test instances necessitating revision. In
the lack of more focused analyses on this aspect, we
can hypothesize that under ideal conditions from
the APE standpoint, the peak of the distribution
would correspond to “post-editable” translations
containing enough errors that leave some margin
for focused corrections but not too many errors to
be so unintelligible to require a whole re-translation
from scratch.16 In light of the above observations,
the APE 2023 test set can be considered as par-
ticularly challenging. As illustrated in Figure 2,
the TER distribution exhibits a U-shaped (bimodal)
pattern, characterized by two prominent peaks cor-
responding to the two most critical regions within
the 0 − 100 TER range. At one extreme, the first
peak corresponds to the vast majority of test in-
stances (about 45% of the total) that can be con-
sidered as perfect or near-perfect translations (i.e.,
0<TER<5), which implies a high chance of apply-
ing unnecessary corrections. At the other extreme,
the second peak corresponds to a significant portion
of test items (about 20%) that can be considered

to 0.78.
16For instance, based on the empirical findings reported

in (Turchi et al., 2013), TER=0.4 is the threshold that, for
human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.

Figure 2: TER distribution in the APE 2023 English-
Marathi test set.

as too poor and unintelligible (i.e., 95<TER<100)
to grant the safe application of any post-editing
strategies. Although the remaining portion of the
test set falls almost entirely in the range of “post-
editable” outputs (i.e., 10<TER<40), its small size
significantly reduces the potential for improvement
through the APE process. Overall, this year’s test
set deviates significantly from all previous ones,
where the TER distributions have never been char-
acterized by such a pronounced bimodal pattern.
In light of this, we can conclude that while, on the
one hand, the repetition rate and machine transla-
tion quality do not provide sufficiently convincing
insights to justify performance below the baseline
for the official submissions, on the other hand, the
TER distribution has posed a significant challenge
for this year’s participants.

5.2 Human Evaluation

We conducted a human evaluation of the primary
system submissions to complement the automatic
evaluations. However, this could be performed
only for the official system submissions, as the late
submission was received after the conclusion of
the human assessments. This section discusses our
evaluation procedure and the results obtained from
it.

5.2.1 Evaluation Procedure
We provided annotation guidelines to professional
translators who are native speakers of the target lan-
guage. The same guidelines were also used to col-
lect Indic language quality estimation shared task
dataset (Zerva et al., 2022). The annotators pro-
vided a source-based direct assessment (DA) (Gra-
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Avg DA Avg z

test.pe 83.76 0.426

KU_UPs-filtered4-PRIMARY 66.56 −0.171
test.mt 65.86 −0.138

kaistai_prompt-w-cot_primary 64.79 −0.116

Table 6: Results for the human evaluation campaign
for the En-Mr language pair. Systems ordered by DA
score; systems within a cluster are considered tied; lines
indicate clusters according to Wilcoxon rank-sum test p
<0.05.

ham et al., 2013b; Cettolo et al., 2017; Bojar et al.,
2018) score to each segment containing the source
and the APE system output. We hired 4 translators
to evaluate the two primary system submissions
(KU_UP & KAISTAI), manually post-edited seg-
ments (test.pe), and the MT Output (test.mt). We
chose to allocate an equal number of instances to
each translator after shuffling, and only a single DA
annotation was collected for each instance (Toral,
2020). Shuffling the instances before allocation
helps prevent annotator bias towards a single sys-
tem in the direct assessments.

The annotation guidelines provide a detailed de-
scription of potential adequacy and fluency-based
errors based on which the translator could estimate
the direct assessment score range. However, the
translators were additionally instructed to priori-
tize adequacy errors and focus on assessing the
semantic similarity between the source and the sys-
tem output. The annotators manually entered the
DA score between 0-100. The collected DA an-
notations were unshuffled based on the segment
IDs, which were unknown to the translators. We
expected the human post-editing to be of higher
quality compared to APE system submissions and,
consequently, better than the MT baseline.

5.2.2 Evaluation Results

We present the results obtained from the human
evaluation campaign in Table 6. As expected, the
human post-edited segments were rated the high-
est at 83.76 mean DA score. However, contrary to
automatic evaluation, the submission by KU_UP
was rated slightly better than the MT baseline
(test.mt). But, the score difference in both cases-
human and automatic evaluation, seems insignifi-
cant. Additionally, as per the Wilcoxon Rank-sum
test, KU_UP and MT baseline score distributions
seem to be in a cluster. In line with the automatic

evaluation, the mean DA obtained by the submis-
sion from kaistai was rated the lowest at 64.79,
lower than the MT baseline at 65.86. This sub-
mission utilizes LLMs to perform the APE task
and raises a question on the viability of LLMs for
APE when a low-resource language is concerned.
LLMs are mostly fine-tuned and/or evaluated on
task datasets in English (Hendrycks et al., 2020;
Longpre et al., 2023), and there remain unanswered
questions on their viability for complex and chal-
lenging multilingual tasks like APE. Owing to a
challenging test set this year, our analysis high-
lights the difficulty posed by the task and implores
us to consider a different setting in which the APE
task can perhaps gain assistance through a transla-
tion quality signal. QE systems have been explored
for assisting the APE task in a supervised multi-
task scenario, which intuitively helps the model
perform better at both tasks.

6 Conclusion

We presented the results from the 9th shared task
on Automatic Post-Editing at WMT. In continuity
with the 2022 round, the task focused on the au-
tomatic correction of NMT outputs generated by
a black-box English-Marathi system. The three
participating systems were evaluated both automat-
ically (with TER as the primary metric, BLEU,
and ChrF) and manually. According to automatic
evaluation results, only one (late) submission suc-
ceeded in outperforming the do-nothing baseline.
The analysis of this year’s data suggests that one of
the main causes of difficulty might be the bimodal,
U-shaped TER distribution of the test instances,
which substantially differs from the test set distri-
butions observed in all previous rounds (skewed
but a pattern closer to normal). Our manual evalu-
ation confirms the automatic evaluation outcomes
and affirms the challenge posed by APE for the
current approaches. We observe that one of the sys-
tems performs quite close to the MT baseline while
the other performs well below the same. Addition-
ally, the lack of multilingual datasets in LLM train-
ing/benchmarking raises a question on the viability
of performing challenging multilingual tasks like
APE. All in all, these findings advocate for further
research on this challenging problem, which, far
from being solved, this year revealed new nuances
in terms of difficulty. Next year, we plan to intro-
duce two new low-resource language pair datasets
for the APE task. Future developments will also
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likely include a re-definition of some aspects of
the evaluation settings, which have remained rel-
atively stable over the years. For instance, the set
of automatic evaluation metrics will likely be re-
considered and expanded so as to include more
semantics-oriented measures, with an eye on the ad-
vent of large language models increasingly adopted
also for APE.
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