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Building block: artificial neurons

analogy to biological neurons
input ≈ dendrites

activation function ≈ neuron ’fires’ if voltage threshold is reached

output ≈ axon

© Christoph Burgmer CC-BY-SA-3.0
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
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A simple neural network

neural networks can solve non-linear functions.

XOR
Truth table

A B output
0 0 0
0 1 1
1 0 1
1 1 0
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(neurons arranged in layers, and fire if input is ≥ 1)
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A simple neural network: math

neural networks can be implemented via matrix operations

network
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w1 =




1 0
0.5 0.5
0 1


 h1 =



A
B
C


 x =

[
x1
x2

]

w2 =
[
1 −2 1

]
y =

[
D
]

calculation of x 7→ y

ϕ(z) = z ≥ 1

h1 = ϕ(w1x)

y = ϕ(w2h1)
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A simple neural network: Python code

import numpy

#activation function

def phi(x):

return numpy.greater_equal(x,1).astype(int)

def nn(x):

w1 = numpy.array([ [1, 0.5, 0], [0, 0.5, 1] ])

w2 = numpy.array([[1], [-2], [1]])

h1 = phi(x.dot(w1))

h2 = phi(h1.dot(w2))

return h2

print nn(numpy.array([1, 0]))
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Training a neural network

Gradient descent
requirements:

labelled training data (supervised learning)
differentiable objective function

in forward pass, compute network output

compare output to true label to compute error

move all parameters in direction that minimizes error

chain rule allows efficient computation of gradient for each parameter
in backward pass→ backpropagation of error

we approximate gradient on small minibatches to perform frequent
updates→ stochastic gradient descent
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Activation functions

Activation functions
desirable:

differentiable (for stochastic gradient descent)
monotonic (for convexity)
non-linear activation functions essential to learn non-linear functions

−3 −2 −1 1 2 3

−1

1

2

3

x

y

identity (linear)
sigmoid

tanh
rectified linear unit (ReLU)
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Further basics

hyperparameters:
number and size of layers
minibatch size
learning rate
...

initialisation of weight matrices

stopping criterion

regularization (dropout)

bias units (always-on input)

more complex architectures (recurrent/convolutional networks)
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Resources

Theano http://deeplearning.net/software/theano/

Torch http://torch.ch/

Tensorflow https://www.tensorflow.org/

toolkits provide useful abstractions for neural networks:
routines for n-dimensional arrays (tensors)
simple use of different linear algebra backends (CPU/GPU)
automatic differentiation
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Language modelling

chain rule and Markov assumption
a sentence T of length n is a sequence w1, . . . , wn

p(T ) = p(w1, . . . , wn)

=

n∏
i=1

p(wi|w0, . . . , wi−1) (chain rule)

≈
n∏

i=1

p(wi|wi−k, . . . , wi−1) (Markov assumption: n-gram model)
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N-gram language model with feedforward neural network

[Vaswani et al., 2013]

n-gram NNLM [Bengio et al., 2003]
input: context of n-1 previous words

output: probability distribution for next word

linear embedding layer with shared weights

one or several hidden layers
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Representing words as vectors

One-hot encoding
example vocabulary: ’man, ’runs’, ’the’, ’.’

input/output for p(runs|the man):

x0 =




0
0
1
0


 x1 =




1
0
0
0


 ytrue =




0
1
0
0




size of input/output vector: vocabulary size
embedding layer is lower-dimensional and dense

smaller weight matrices
network learns to group similar words to similar point in vector space
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Softmax activation function

softmax function

p(y = j|x) = exj

∑
k e

xk

softmax function normalizes output vector to probability distribution
→ computational cost linear to vocabulary size (!)

ideally: probability 1 for correct word; 0 for rest

SGD with softmax output minimizes cross-entropy (and hence
perplexity) of neural network
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Feedforward neural language model: math

[Vaswani et al., 2013]

h1 = ϕW1(Ex1, Ex2)

y = softmax(W2h1)
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Feedforward neural language model in SMT

FFNLM
can be integrated as a feature in the log-linear SMT model
[Schwenk et al., 2006]

costly due to matrix multiplications and softmax
solutions:

n-best reranking
variants of softmax (hierarchical softmax, self-normalization [NCE])
shallow networks; premultiplication of hidden layer

scale well to many input words
→ models with source context [Devlin et al., 2014]
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Recurrent neural network language model (RNNLM)

RNNLM
motivation: condition on arbitrarily long context
→ no Markov assumption

we read in one word at a time, and update hidden state incrementally

hidden state is initialized as empty vector at time step 0
parameters:

embedding matrix E
feedforward matrices W1, W2

recurrent matrix U

hi =

{
0, , if i = 0

tanh(W1Exi + Uhi−1) , if i > 0

yi = softmax(W2hi−1)
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RNN variants

gated units
alternative to plain RNN

sigmoid layers σ act as “gates” that control flow of information

allows passing of information over long time
→ avoids vanishing gradient problem

strong empirical results
popular variants:

Long Short Term Memory (LSTM) (shown)
Gated Recurrent Unit (GRU)

Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Translation modelling

decomposition of translation problem (for NMT)
a source sentence S of length m is a sequence x1, . . . , xm
a target sentence T of length n is a sequence y1, . . . , yn

T ∗ = argmax
t

p(T |S)

p(T |S) = p(y1, . . . , yn|x1, . . . , xm)

=

n∏
i=1

p(yi|y0, . . . , yi−1, x1, . . . , xm)
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Translating with RNNs

Encoder-decoder [Sutskever et al., 2014, Cho et al., 2014]
two RNNs (LSTM or GRU):

encoder reads input and produces hidden state representations
decoder produces output, based on last encoder hidden state

encoder and decoder are learned jointly
→ supervision signal from parallel text is backpropagated

Kyunghyun Cho http://devblogs.nvidia.com/parallelforall/

introduction-neural-machine-translation-gpus-part-2/
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Neural machine translation: information bottleneck

summary vector
last encoder hidden-state “summarizes” source sentence

can fixed-size vector represent meaning of arbitrarily long sentence?

empirically, quality decreases for long sentences

reversing source sentence brings some improvement
[Sutskever et al., 2014]

[Sutskever et al., 2014]
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Attentional encoder-decoder

encoder
goal: avoid bottleneck of summary vector

use bidirectional RNN, and concatenate forward and backward states
→ annotation vector hi
represent source sentence as vector of n annotations
→ variable-length representation

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
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Attentional encoder-decoder

attention
problem: how to incorporate variable-length context into hidden state?

attention model computes context vector as weighted average of
annotations

weights are computed by feedforward neural network with softmax
activation

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
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Attentional encoder-decoder: math

simplifications of model by [Bahdanau et al., 2015] (for illustration)
plain RNN instead of GRU

simpler output layer

we do not show bias terms

notation
W , U , E, C, V are weight matrices (of different dimensionality)

Ex one-hot to embedding (e.g. 50000 · 512)
Wx embedding to hidden (e.g. 512 · 1024)
Ux hidden to hidden (e.g. 1024 · 1024)
C context (2x hidden) to hidden (e.g. 2048 · 1024)
...

separate weight matrices for encoder and decoder (e.g. Ex and Ey)

input X of length Tx; output Y of length Ty
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Attentional encoder-decoder: math

encoder

−→
h j =

{
0, , if j = 0

tanh(
−→
W xExxj +

−→
U xhj−1) , if j > 0

←−
h j =

{
0, , if j = Tx + 1

tanh(
←−
W xExxj +

←−
U xhj+1) , if j ≤ Tx

hj = (
−→
h j ,
←−
h j)
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Attentional encoder-decoder: math

decoder

si =

{
tanh(Ws

←−
h i), , if i = 0

tanh(WyEyyi + Uysi−1 + Cci) , if i > 0

ti = tanh(Uosi−1 + VoEyyi−1 + Coci)

yi = softmax(Woti)

attention model

eij = v>a tanh(Wasi−1 + Uahj)

αij = softmax(eij)

ci =

Tx∑

j=1

αijhj
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Attention model

attention model
side effect: we obtain alignment between source and target sentence
applications:

visualisation
replace unknown words with back-off dictionary [Jean et al., 2015]
...?

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
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Attention model

attention model also works with images:

[Cho et al., 2015]
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Attention model

[Cho et al., 2015]
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Neural machine translation: decoding

decoding

exact search intractable: N |vocab| for each possible output length N
→ approximative search for best translation
given decoder state si, compute probability of each output word yi

sampling: pick a random word (considering probability)
greedy search: pick the most probable word
beam search: pick the k most probable words, and compute yi+1 for
each hypothesis in beam

beam search with small beam (k ≈ 10) seems sufficient for neural
machine translation

ensemble: compute probability distribution for next word with multiple
models, and use (geometric) average
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Further Reading

secondary literature
lecture notes by Kyunghyun Cho: [Cho, 2015]

introduction to LSTM (and GRU):
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

“Statistical Machine Translation” by Philipp Koehn (unpublished 2nd edition)
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(A small selection of) Resources

feedforward neural LM toolkits
CSLM http://www-lium.univ-lemans.fr/cslm/

NPLM https://github.com/moses-smt/nplm

OXLM https://github.com/pauldb89/OxLM

NMT tools
dl4mt-tutorial (theano) https://github.com/nyu-dl/dl4mt-tutorial

(our branch: nematus https://github.com/rsennrich/nematus)

nmt.matlab https://github.com/lmthang/nmt.matlab

seq2seq (tensorflow) https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html
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Do it yourself

sample files and instructions for training NMT model
https://github.com/rsennrich/wmt16-scripts

pre-trained models to test decoding (and for further experiments)
http://statmt.org/rsennrich/wmt16_systems/

please let me know about gaps in documentation

NMT tools (previous slide) may also contain instructions/samples
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State of Neural MT

Attentional encoder-decoder networks are state of the art in MT

similar models used for other NLP tasks

Rico Sennrich Neural Machine Translation 38 / 65



Attentional encoder-decoders (NMT) are SOTA

system BLEU

uedin-nmt 34.2
metamind 32.3

NYU-UMontreal 30.8
cambridge 30.6

uedin-syntax 30.6
KIT/LIMSI 29.1

KIT 29.0
uedin-pbmt 28.4
jhu-syntax 26.6

Table: WMT16 results for EN→DE

system BLEU

uedin-nmt 38.6
uedin-pbmt 35.1
jhu-pbmt 34.5

uedin-syntax 34.4
KIT 33.9

jhu-syntax 31.0

Table: WMT16 results for DE→EN

pure NMT

NMT component

other neural components
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Attentional encoder-decoders (NMT) are SOTA

uedin-nmt 25.8
NYU-UMontreal 23.6

jhu-pbmt 23.6
cu-chimera 21.0

uedin-cu-syntax 20.9
cu-tamchyna 20.8
cu-TectoMT 14.7

cu-mergedtrees 8.2

Table: WMT16 results for EN→CS

uedin-pbmt 35.2
uedin-nmt 33.9

uedin-syntax 33.6
jhu-pbmt 32.2

LIMSI 31.0

Table: WMT16 results for RO→EN

uedin-nmt 31.4
jhu-pbmt 30.4
PJATK 28.3

cu-mergedtrees 13.3

Table: WMT16 results for CS→EN

QT21-HimL-SysComb 28.9
uedin-nmt 28.1

RWTH-SYSCOMB 27.1
uedin-pbmt 26.8

uedin-lmu-hiero 25.9
KIT 25.8

lmu-cuni 24.3
LIMSI 23.9

jhu-pbmt 23.5
usfd-rescoring 23.1

Table: WMT16 results for EN→RO
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Attentional encoder-decoders (NMT) are SOTA

uedin-nmt 26.0
amu-uedin 25.3
jhu-pbmt 24.0

LIMSI 23.6
AFRL-MITLL 23.5

NYU-UMontreal 23.1
AFRL-MITLL-verb-annot 20.9

Table: WMT16 results for EN→RU

amu-uedin 29.1
NRC 29.1

uedin-nmt 28.0
AFRL-MITLL 27.6

AFRL-MITLL-contrast 27.0

Table: WMT16 results for RU→EN

uedin-pbmt 23.4
uedin-syntax 20.4
PROMT-SMT 20.3
UH-factored 19.3

jhu-pbmt 19.1

Table: WMT16 results for FI→EN

abumatran-combo 17.4
abumatra-nmt 17.2

NYU-UMontreal 15.1
abumatran-pbsmt 14.6

jhu-pbmt 13.8
UH-factored 12.8
jhu-hltcoe 11.9

UUT 11.6
aalto 11.6

Table: WMT16 results for EN→FI
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Selected examples from WMT16

system sentence
source Unsere digitalen Leben haben die Notwendigkeit, stark, lebenslustig und erfolgreich zu erscheinen, verdoppelt [...]
reference Our digital lives have doubled the need to appear strong, fun-loving and successful [...]
uedin-nmt Our digital lives have doubled the need to appear strong, lifelike and successful [...]
uedin-pbsmt Our digital lives are lively, strong, and to be successful, doubled [...]
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Selected examples from WMT16
system sentence
source Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
uedin-nmt There he was attacked again by the racket and another male person.
uedin-pbsmt There, he was at the club and another male person attacked again.

Schläger

attackerracket club

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

golf club https://commons.wikimedia.org/wiki/File:Golf_club,_Callawax_X-20_8_iron_-_III.jpg / CC-BY-SA-3.0

Rico Sennrich Neural Machine Translation 41 / 65



Selected examples from WMT16
system sentence
source Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
uedin-nmt There he was attacked again by the racket and another male person.
uedin-pbsmt There, he was at the club and another male person attacked again.

Schläger

attacker

racket

club

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

golf club https://commons.wikimedia.org/wiki/File:Golf_club,_Callawax_X-20_8_iron_-_III.jpg / CC-BY-SA-3.0

Rico Sennrich Neural Machine Translation 41 / 65



Selected examples from WMT16
system sentence
source Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
uedin-nmt There he was attacked again by the racket and another male person.
uedin-pbsmt There, he was at the club and another male person attacked again.

Schläger

attackerracket

club

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

golf club https://commons.wikimedia.org/wiki/File:Golf_club,_Callawax_X-20_8_iron_-_III.jpg / CC-BY-SA-3.0

Rico Sennrich Neural Machine Translation 41 / 65



Selected examples from WMT16
system sentence
source Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
uedin-nmt There he was attacked again by the racket and another male person.
uedin-pbsmt There, he was at the club and another male person attacked again.

Schläger

attackerracket club

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

golf club https://commons.wikimedia.org/wiki/File:Golf_club,_Callawax_X-20_8_iron_-_III.jpg / CC-BY-SA-3.0

Rico Sennrich Neural Machine Translation 41 / 65



Selected examples from WMT16

system sentence
source Ein Jahr später machten die Fed-Repräsentanten diese Kürzungen rückgängig.
reference A year later, Fed officials reversed those cuts.
uedin-nmt A year later, FedEx officials reversed those cuts.
uedin-pbsmt A year later, the Fed representatives made these cuts.
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Selected examples from WMT16

system sentence
source Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
reference The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-nmt Defending champion is third-round pick SpVgg Underhaching.
uedin-pbsmt Title defender Drittligaabsteiger Week 2.
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Comparison between phrase-based and neural MT

pro neural MT
improved grammaticality [Neubig et al., 2015]

word order
insertion/deletion of function words
morphological agreement

pro phrase-based/syntax-based SMT
minor degradation in lexical choice? [Neubig et al., 2015]

others
rare/unseen words are problematic for both:

PBSMT suffers from data sparseness and noisy phrase alignment
(our) NMT system attempts subword-level translation
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Why is neural MT output more grammatical?

neural MT
end-to-end trained model

generalization via continuous space representation

output conditioned on full source text and target history

phrase-based SMT
log-linear combination of many “weak” features

data sparsenesss triggers back-off to smaller units

strong independence assumptions
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Efficiency

speed bottlenecks
matrix multiplication
→ use of highly parallel hardware (GPUs)
softmax (scales with vocabulary size). Solutions:

LMs: hierarchical softmax; noise-contrastive estimation;
self-normalization
NMT: approximate softmax through subset of vocabulary
[Jean et al., 2015]

NMT training vs. decoding (on fast GPU)
training: slow (1-3 weeks)

decoding: fast (100 000–500 000 sentences / day)a

awith NVIDIA Titan X and amuNN (https://github.com/emjotde/amunn)
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Open-vocabulary translation

Why is vocabulary size a problem?
size of one-hot input/output vector is linear to vocabulary size

large vocabularies are space inefficient

large output vocabularies are time inefficient

typical network vocabulary size: 30 000–100 000

What about out-of-vocabulary words?
training set vocabulary typically larger than network vocabulary
(1 million words or more)
at translation time, we regularly encounter novel words:

names: Barack Obama
morph. complex words: Hand|gepäck|gebühr (’carry-on bag fee’)
numbers, URLs etc.
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Open-vocabulary translation

Solutions
copy unknown words, or translate with back-off dictionary
[Jean et al., 2015, Luong et al., 2015b, Gülçehre et al., 2016]
→ works for names (if alphabet is shared), and 1-to-1 aligned words

use subword units (characters or others) for input/output vocabulary
→ model can learn translation of seen words on subword level
→ model can translate unseen words if translation is transparent
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Transparent translations

Transparent translations
some translations are semantically/phonologically transparent
→ no memorization needed; can be translated via subword units
morphologically complex words (e.g. compounds):

solar system (English)
Sonnen|system (German)
Nap|rendszer (Hungarian)

named entities:
Barack Obama (English; German)
Áàðàê Îáàìà (Russian)
バラク・オバマ (ba-ra-ku o-ba-ma) (Japanese)

cognates and loanwords:
claustrophobia (English)
Klaustrophobie (German)
Êëàóñòðîôîáèÿ (Russian)

many rare/unseen words belong to one of these categories
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Subword neural machine translation

Flat representation [Sennrich et al., 2015b, Chung et al., 2016]
sentence is a sequence of subword units

Hierarchical representation
[Ling et al., 2015, Luong and Manning, 2016]

sentence is a sequence of words

words are a sequence of subword units

Under review as a conference paper at ICLR 2016

variables, the source attention a and the target context lfp−1, the probability of a given word type tp

being the next translated word tp is given by:

P (tp|a, lfp−1) =
exp(eS

tp

a a+Stp

l lfp−1)
∑

j∈[0,T ] exp(e
Sj

aa+Sj
l l

f
p−1)

,

where Sa and Sl are the parameters that map the conditioned vectors into a score for each word type
in the target language vocabulary T . The parameters for a specific word type j are obtained as Sj

a

and Sj
l , respectively. Then, scores are normalized into a probability.

2.2 CHARACTER-BASED MACHINE TRANSLATION

We now present our adaptation of the word-based neural network model to operate over character
sequences rather than word sequences. However, unlike previous approaches that attempt to discard
the notion of words completely (Vilar et al., 2007; Neubig et al., 2013), we propose an hierarhical
architecture, which replaces the word lookup tables (steps 1 and 3) and the word softmax (step 6)
with character-based alternatives, which compose the notion of words from individual characters.
The advantage of this approach is that we benefit from properties of character-based approaches (e.g.
compactness and orthographic sensitivity), but can also easily be incorporated into any word-based
neural approaches.

Character-based Word Representation The work in (Ling et al., 2015; Ballesteros et al., 2015)
proposes a compositional model for learning word vectors from characters. Similar to word lookup
tables, a word string sj is mapped into a ds,w-dimensional vector, but rather than allocating param-
eters for each individual word type, the word vector sj is composed by a series of transformation
using its character sequence sj,0, . . . , sj,x.

* C2W Compositional Model

BLSTM

W h e r e

Word Vector for "Where"

Figure 2: Illustration of the C2W model. Square boxes represent vectors of neuron activations.

The illustration of the model is shown in 2. Essentially, the model builds a representation of the word
using characters, by reading characters from left to right and vice-versa. More formally, given an in-
put word sj = sj,0, . . . , sj,x, the model projects each character into a continuous ds,c-dimensional
vectors sj,0, . . . , sj,x using a character lookup table. Then, it builds a forward LSTM state se-
quence hf

0 , . . . ,h
f
k by reading the character vectors sj,0, . . . , sj,x. Another, backward LSTM reads

the character vectors in the reverse order generating the backward states hb
k, . . . ,h

b
0. Finally, the

4

open question: should attention be on level of words or subwords?
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Subword neural machine translation

Choice of subword unit
character-level: small vocabulary, long sequences

morphemes (?): hard to control vocabulary size

hybrid choice: shortlist of words, subwords for rare words

variable-length character n-grams: byte-pair encoding (BPE)

open research question which subword segmentation is best choice in
terms of efficiency and effectiveness.
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Byte pair encoding for word segmentation

word segmentation with byte-pair encoding [Sennrich et al., 2015b]
actually a merge algorithm, starting from characters

iteratively replace most frequent pair of symbols (’A’,’B’) with ’AB’

apply on dictionary, not on full text (for efficiency)

output vocabulary: original vocabulary + one symbol per merge

’l o w </w>’ : 5
’l o w e r </w>’ : 2
’n e w e s t </w>’ : 6
’w i d e s t </w>’ : 3

(’e’, ’s’) : 9
(’es’, ’t’) : 9
(’est’, ’</w>’) : 9
(’l’, ’o’) : 7
(’lo’, ’w’) : 7
...
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Byte pair encoding for word segmentation

why BPE?
good trade-off between vocabulary size and text length

segmentation # tokens # types # UNK
none 100 m 1 750 000 1079
characters 550 m 3000 0
BPE (60k operations) 112 m 63 000 0

learned operations can be applied to unknown words
→ open-vocabulary

’l o w e s t </w>’

(’e’, ’s’) : 9
(’es’, ’t’) : 9
(’est’, ’</w>’) : 9
(’l’, ’o’) : 7
(’lo’, ’w’) : 7
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Byte pair encoding for word segmentation

system sentence
source health research institutes
reference Gesundheitsforschungsinstitute
copy unknown words Forschungsinstitute
character bigrams Fo|rs|ch|un|gs|in|st|it|ut|io|ne|n
BPE (joint vocabulary) Gesundheits|forsch|ungsin|stitute

source asinine situation
reference dumme Situation
copy unknown words asinine situation→ UNK→ asinine
character bigrams as|in|in|e situation→ As|in|en|si|tu|at|io|n
BPE (joint vocabulary) as|in|ine situation→ As|in|in-|Situation

Table: English→German translation example. “|” marks subword boundaries.

system sentence
source Mirzayeva
reference Ìèðçàåâà (Mirzaeva)
copy unknown words Mirzayeva → UNK→ Mirzayeva
character bigrams Mi|rz|ay|ev|a→Ìè|ðç|àå|âà (Mi|rz|ae|va)
BPE (joint vocabulary) Mir|za|yeva →Ìèð|çà|åâà (Mir|za|eva)

Table: English→Russian translation example. “|” marks subword boundaries.
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Architecture variants

convolution network as encoder [Kalchbrenner and Blunsom, 2013]

TreeLSTM as encoder [Eriguchi et al., 2016]

modifications to attention mechanism
[Luong et al., 2015a, Feng et al., 2016, Tu et al., 2016, Mi et al., 2016]
→ goal of better modelling distortion, coverage, etc.

reward symmetry between source-to-target and target-to-source
attention [Cohn et al., 2016, Cheng et al., 2015]
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Sequence-level training

problem: at training time, target-side history is reliable;
at test time, it is not.

solution: instead of using gold context, sample from the model to
obtain target context
[Shen et al., 2015, Ranzato et al., 2015, Bengio et al., 2015]

more efficient cross entropy training remains in use to initialize
weights
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Training data: monolingual

Why train on monolingual data?
cheaper to create/collect

parallel data is scarce for many language pairs

domain adaptation with in-domain monolingual data
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Training data: monolingual

Solutions/1
shallow fusion: rerank with language model [Gülçehre et al., 2015]

deep fusion: extra, LM-specific hidden layer [Gülçehre et al., 2015]

(a) Shallow Fusion (Sec. 4.1) (b) Deep Fusion (Sec. 4.2)

Figure 1: Graphical illustrations of the proposed fusion methods.

learned by the LM from monolingual corpora is
not overwritten. It is possible to use monolingual
corpora as well while finetuning all the parame-
ters, but in this paper, we alter only the output pa-
rameters in the stage of finetuning.

4.2.1 Balancing the LM and TM
In order for the decoder to flexibly balance the in-
put from the LM and TM, we augment the decoder
with a “controller” mechanism. The need to flex-
ibly balance the signals arises depending on the
work being translated. For instance, in the case
of Zh-En, there are no Chinese words that corre-
spond to articles in English, in which case the LM
may be more informative. On the other hand, if
a noun is to be translated, it may be better to ig-
nore any signal from the LM, as it may prevent the
decoder from choosing the correct translation. In-
tuitively, this mechanism helps the model dynami-
cally weight the different models depending on the
word being translated.

The controller mechanism is implemented as a
function taking the hidden state of the LM as input
and computing

gt = σ
(
v>g s

LM
t + bg

)
, (7)

where σ is a logistic sigmoid function. vg and bg
are learned parameters.

The output of the controller is then multiplied
with the hidden state of the LM. This lets the de-

coder use the signal from the TM fully, while the
controller controls the magnitude of the LM sig-
nal.

In our experiments, we empirically found that it
was better to initialize the bias bg to a small, neg-
ative number. This allows the decoder to decide
the importance of the LM only when it is deemed
necessary.

5 Datasets

We evaluate the proposed approaches on four di-
verse tasks: Chinese to English (Zh-En), Turkish
to English (Tr-En), German to English (De-En)
and Czech to English (Cs-En). We describe each
of these datasets in more detail below.

5.1 Parallel Corpora

5.1.1 Zh-En: OpenMT’15
We use the parallel corpora made available
as a part of the NIST OpenMT’15 Challenge.
Sentence-aligned pairs from three domains are
combined to form a training set: (1) SMS/CHAT
and (2) conversational telephone speech (CTS)
from DARPA BOLT Project, and (3) newsgroup-
s/weblogs from DARPA GALE Project. In total,
the training set consists of 430K sentence pairs
(see Table 1 for the detailed statistics). We train

In all our experiments, we set bg = −1 to ensure that
gt is initially 0.26 on average.

[Gülçehre et al., 2015]
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Training data: monolingual

Solutions/2
decoder is already a language model. Train encoder-decoder with
added monolingual data [Sennrich et al., 2015a]

ti = tanh(Uosi−1 + VoEyyi−1 + Coci)

yi = softmax(Woti)

how do we get approximation of context vector ci?
dummy source context (moderately effective)
automatically back-translate monolingual data into source language

name 2014 2015
PBSMT [Haddow et al., 2015] 28.8 29.3
NMT [Gülçehre et al., 2015] 23.6 -
shallow fusion [Gülçehre et al., 2015] 23.7 -
deep fusion [Gülçehre et al., 2015] 24.0 -
NMT baseline 25.9 26.7
+back-translated monolingual data 29.5 30.4

Table: DE→EN translation performance (BLEU) on WMT training/test sets.
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Training data: multilingual

Multi-source translation [Zoph and Knight, 2016]
we can condition on multiple input sentences

A B C <EOS> W X Y Z 

<EOS> Z Y X W 

A B C 

<EOS> W X Y Z 

<EOS> Z Y X W 

I J K 

Figure 2: Multi-source encoder-decoder model for MT. We have two source sentences (C B A and K J I)
in different languages. Each language has its own encoder; it passes its final hidden and cell state to a set
of combiners (in black). The output of a combiner is a hidden state and cell state of the same dimension.

the input gate of a typical LSTM cell. In equa-
tion 4, there are two forget gates indexed by the
subscript i that serve as the forget gates for each
of the incoming cells for each of the encoders. In
equation 5, o represents the output gate of a nor-
mal LSTM. i, f , o, and u are all size-1000 vectors.

2.3 Multi-Source Attention
Our single-source attention model is modeled off
the local-p attention model with feed input from
Luong et al. (2015b), where hidden states from the
top decoder layer can look back at the top hidden
states from the encoder. The top decoder hidden
state is combined with a weighted sum of the en-
coder hidden states, to make a better hidden state
vector (h̃t), which is passed to the softmax output
layer. With input-feeding, the hidden state from
the attention model is sent down to the bottom de-
coder layer at the next time step.

The local-p attention model from Luong et al.
(2015b) works as follows. First, a position to look
at in the source encoder is predicted by equation 9:

pt = S · sigmoid(vTp tanh(Wpht)) (9)

S is the source sentence length, and vp and Wp

are learned parameters, with vp being a vector of
dimension 1000, and Wp being a matrix of dimen-
sion 1000 x 1000.

After pt is computed, a window of size 2D + 1
is looked at in the top layer of the source encoder
centered around pt (D = 10). For each hidden
state in this window, we compute an alignment

score at(s), between 0 and 1. This alignment score
is computed by equations 10, 11 and 12:

at(s) = align(ht, hs)exp
(−(s− pt)2

2σ2

)
(10)

align(ht, hs) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs′))

(11)

score(ht, hs) = hTt Wahs (12)

In equation 10, σ is set to be D/2 and s is the
source index for that hidden state. Wa is a learn-
able parameter of dimension 1000 x 1000.

Once all of the alignments are calculated, ct is
created by taking a weighted sum of all source hid-
den states multiplied by their alignment weight.

The final hidden state sent to the softmax layer
is given by:

h̃t = tanh
(
Wc[ht; ct]

)
(13)

We modify this attention model to look at both
source encoders simultaneously. We create a con-
text vector from each source encoder named c1t
and c2t instead of the just ct in the single-source
attention model:

h̃t = tanh
(
Wc[ht; c

1
t ; c

2
t ]
)

(14)

In our multi-source attention model we now
have two pt variables, one for each source encoder.

benefits:
one source text may contain information that is undespecified in other
→ possible quality gains

drawbacks:
we need multiple source sentences at training and decoding time
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Training data: multilingual

Multilingual models [Dong et al., 2015, Firat et al., 2016]
we can share layers of the model across language pairsFigure 2: Multi-task learning framework for multiple-target language translation

Figure 3: Optimization for end to multi-end model

3.4 Translation with Beam Search
Although parallel corpora are available for the
encoder and the decoder modeling in the training
phrase, the ground truth is not available during test
time. During test time, translation is produced by
finding the most likely sequence via beam search.

Ŷ = argmax
Y

p(YTp |STp) (15)

Given the target direction we want to translate to,
beam search is performed with the shared encoder
and a specific target decoder where search space
belongs to the decoder Tp. We adopt beam search
algorithm similar as it is used in SMT system
(Koehn, 2004) except that we only utilize scores
produced by each decoder as features. The size
of beam is 10 in our experiments for speedup
consideration. Beam search is ended until the end-
of-sentence eos symbol is generated.

4 Experiments

We conducted two groups of experiments to
show the effectiveness of our framework. The
goal of the first experiment is to show that
multi-task learning helps to improve translation
performance given enough training corpora for all
language pairs. In the second experiment, we
show that for some resource-poor language pairs
with a few parallel training data, their translation
performance could be improved as well.

4.1 Dataset
The Europarl corpus is a multi-lingual corpus
including 21 European languages. Here we only
choose four language pairs for our experiments.
The source language is English for all language
pairs. And the target languages are Spanish
(Es), French (Fr), Portuguese (Pt) and Dutch
(Nl). To demonstrate the validity of our
learning framework, we do some preprocessing
on the training set. For the source language,
we use 30k of the most frequent words for
source language vocabulary which is shared
across different language pairs and 30k most
frequent words for each target language. Out-
of-vocabulary words are denoted as unknown
words, and we maintain different unknown word
labels for different languages. For test sets,
we also restrict all words in the test set to
be from our training vocabulary and mark the
OOV words as the corresponding labels as in
the training data. The size of training corpus in
experiment 1 and 2 is listed in Table 1 where

1727

benefits:
transfer learning from one language pair to the other
→ possible quality gains, especially for low-resourced language pairs
scalability: do we need N2 −N independent models for N languages?
→ sharing of parameters allows linear growth

drawbacks:
generalization to language pairs with no training data untested
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Training data: other tasks

Multi-task models [Luong et al., 2016]
other tasks can be modelled with sequence-to-sequence models

we can share layers between translation and other tasks

Published as a conference paper at ICLR 2016

Figure 1:Sequence to sequence learning examples – (left) machine translation (Sutskever et al.,
2014) and (right) constituent parsing (Vinyals et al., 2015a).

and German by up to +1.5 BLEU points over strong single-task baselines on the WMT benchmarks.
Furthermore, we have established a newstate-of-the-artresult in constituent parsing with 93.0 F1.
We also explore two unsupervised learning objectives, sequence autoencoders (Dai & Le, 2015) and
skip-thought vectors (Kiros et al., 2015), and reveal theirinteresting properties in the MTL setting:
autoencoder helps less in terms of perplexities but more on BLEU scores compared to skip-thought.

2 SEQUENCE TOSEQUENCE LEARNING

Sequence to sequence learning (seq2seq) aims to directly model the conditional probabilityp(y|x) of
mapping an input sequence,x1, . . . , xn, into an output sequence,y1, . . . , ym. It accomplishes such
goal through theencoder-decoderframework proposed by Sutskever et al. (2014) and Cho et al.
(2014). As illustrated in Figure 1, theencodercomputes a representations for each input sequence.
Based on that input representation, thedecodergenerates an output sequence, one unit at a time, and
hence, decomposes the conditional probability as:

log p(y|x) =
∑m

j=1
log p (yj|y<j , x, s) (1)

A natural model for sequential data is the recurrent neural network (RNN), which is used by most of
the recentseq2seqwork. These work, however, differ in terms of: (a)architecture– from unidirec-
tional, to bidirectional, and deep multi-layer RNNs; and (b) RNN type– which are long-short term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (Cho et al., 2014).

Another important difference betweenseq2seqwork lies in what constitutes the input represen-
tation s. The earlyseq2seqwork (Sutskever et al., 2014; Cho et al., 2014; Luong et al., 2015b;
Vinyals et al., 2015b) uses only the last encoder state to initialize the decoder and setss = [ ]
in Eq. (1). Recently, Bahdanau et al. (2015) proposes anattention mechanism, a way to provide
seq2seqmodels with a random access memory, to handle long input sequences. This is accomplished
by settings in Eq. (1) to be the set of encoder hidden states already computed. On the decoder side,
at each time step, the attention mechanism will decide how much information to retrieve from that
memory by learning where to focus, i.e., computing the alignment weights for all input positions.
Recent work such as (Xu et al., 2015; Jean et al., 2015a; Luonget al., 2015a; Vinyals et al., 2015a)
has found that it is crucial to empowerseq2seqmodels with the attention mechanism.

3 MULTI -TASK SEQUENCE-TO-SEQUENCE LEARNING

We generalize the work of Dong et al. (2015) to the multi-tasksequence-to-sequence learning set-
ting that includes the tasks of machine translation (MT), constituency parsing, and image caption
generation. Depending which tasks involved, we propose to categorize multi-taskseq2seqlearning
into three general settings. In addition, we will discuss the unsupervised learning tasks considered
as well as the learning process.

3.1 ONE-TO-MANY SETTING

This scheme involvesone encoderand multiple decodersfor tasks in which the encoder can be
shared, as illustrated in Figure 2. The input to each task is asequence of English words. A separate
decoder is used to generate each sequence of output units which can be either (a) a sequence of tags

2
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NMT as a component in log-linear models

Log-linear models
model ensembling is well-established

reranking output of phrase-based/syntax-based with NMT
[Neubig et al., 2015]

incorporating NMT as a feature function into PBSMT
[Junczys-Dowmunt et al., 2016]
→ results depend on relative performance of PBSMT and NMT
log-linear combination of different neural models

left-to-right and right-to-left [Liu et al., 2016]
source-to-target and target-to-source [Li and Jurafsky, 2016]
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Some future directions for (neural) MT research

(better) solutions to new(ish) problems
OOVs, coverage, efficiency...

new solutions to old problems
consider context beyond sentence boundary
reward semantic adequacy of translation
deal with underspecified input

Chinese tense
Spanish zero pronouns
English politeness

new opportunities
one model for many language pairs?
tight integration with other NLP tasks
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Lab session this afternoon

hands-on session with loose guidance

theano (+CUDA) installation session

train your own NMT model
https://github.com/rsennrich/wmt16-scripts

try decoding with existing model
http://statmt.org/rsennrich/wmt16_systems/
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Thank you!
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Hands-on session: install theano

theano depends on bleeding-edge numpy
my suggestion: to avoid version conflicts, install in Python virtual
environment

pip install –user virtualenv #install virtualenv
virtualenv virtual_environment #create environemnt
source virtual_environment/bin/activate #start environment
pip install numpy numexpr cython tables theano ipdb #install theano

you may need to install BLAS library and other dependencies
on Debian Linux:
sudo apt-get install liblapack-dev libblas-dev gfortran
libhdf5-serial-dev

if you have NVIDIA GPU, you should install CUDA
if you don’t, training will be too slow
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Hands-on session: train your own model

sample scripts and config at
https://github.com/rsennrich/wmt16-scripts

requirements:
mosesdecoder (just for preprocessing, no installation required)
git clone https://github.com/moses-smt/mosesdecoder
subword-nmt (for BPE segmentation)
git clone https://github.com/rsennrich/subword-nmt
Nematus (DL4MT fork; for training NMT)
git clone https://www.github.com/rsennrich/nematus

set paths in shell scripts, then execute preprocess.sh, then train.sh

to train actual model, use more data, and be patient
script prints status after every 1000 minibatches
→≈ 30 min if CUDA is set up properly
(we train for 300000–600000 minibatches)
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Hands-on session: use pre-trained model

download model(s) from
http://statmt.org/rsennrich/wmt16_systems/

requirements:
mosesdecoder (just for preprocessing, no installation required)
git clone https://github.com/moses-smt/mosesdecoder
subword-nmt (for BPE segmentation)
git clone https://github.com/rsennrich/subword-nmt
Nematus (DL4MT fork; for decoding)
git clone https://www.github.com/rsennrich/nematus

set paths in translate.sh, then execute:
echo "This is a test." | ./translate.sh
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