Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work
Statistical machine translation today

- Best performing methods based on **phrases**
 - short sequences of words
 - no use of explicit syntactic information
 - no use of morphological information
 - currently best performing method

- Progress in **syntax-based** translation
 - tree transfer models using syntactic annotation
 - still shallow representation of words and non-terminals
 - active research, improving performance

One motivation: morphology

- Models treat *car* and *cars* as completely different words
 - training occurrences of *car* have no effect on learning translation of *cars*
 - if we only see *car*, we do not know how to translate *cars*
 - rich morphology (German, Arabic, Finnish, Czech, ...) → many word forms

- Better approach
 - analyze surface word forms into **lemma** and **morphology**, e.g.: *car +plural*
 - translate lemma and morphology separately
 - generate target surface form
Factored translation models

- **Factored representation** of words

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>word</td>
</tr>
<tr>
<td>lemma</td>
<td>lemma</td>
</tr>
<tr>
<td>part-of-speech</td>
<td>part-of-speech</td>
</tr>
<tr>
<td>morphology</td>
<td>morphology</td>
</tr>
<tr>
<td>word class</td>
<td>word class</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Goals**
 - **Generalization**, e.g. by translating lemmas, not surface forms
 - **Richer model**, e.g. using syntax for reordering, language modeling)

Related work

- **Back off** to representations with richer statistics (lemma, etc.)
- Use of additional annotation in **pre-processing** (POS, syntax trees, etc.)
 [Collins et al., 2005, Crego et al, 2006]
- Use of additional annotation in **re-ranking** (morphological features, POS, syntax trees, etc.)
 [Och et al. 2004, Koehn and Knight, 2005]
 → we pursue an **integrated approach**
- Use of syntactic **tree structure**
 → may be **combined** with our approach
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

Decomposing translation: example

- Translate lemma and syntactic information separately

\[
\begin{align*}
\text{lemma} & \Rightarrow \text{lemma} \\
\text{part-of-speech morphology} & \Rightarrow \text{part-of-speech morphology}
\end{align*}
\]
Decomposing translation: example

- **Generate surface** form on target side

Translation process: example

Input: `(Autos, Auto, NNS)`

1. Translation step: lemma \Rightarrow lemma

 `(? , car , ?), (? , auto , ?)`

2. Generation step: lemma \Rightarrow part-of-speech

 `(? , car , NN), (? , car , NNS), (? , auto , NN), (? , auto , NNS)`

3. Translation step: part-of-speech \Rightarrow part-of-speech

 `(? , car , NN), (? , car , NNS), (? , auto , NNP), (? , auto , NNS)`

4. Generation step: lemma, part-of-speech \Rightarrow surface

 `(car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)`
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

Model

- Extension of phrase model
- Mapping of foreign words into English words broken up into steps
 - translation step: maps foreign factors into English factors (on the phrasal level)
 - generation step: maps English factors into English factors (for each word)
- Each step is modeled by one or more feature functions
 - fits nicely into log-linear model
 - weight set by discriminative training method
- Order of mapping steps is chosen to optimize search
Phrase-based training

- Establish word alignment (GIZA++ and symmetrization)

natürlich hat john
has fun with the game

⇒ natürlich hat john — naturally john has

Phrase-based training

- Extract phrase
Factored training

- Annotate training with factors, extract phrase

⇒ ADV V NNP — ADV NNP V

Training of generation steps

- Generation steps map target factors to target factors
 - typically trained on target side of parallel corpus
 - may be trained on additional monolingual data
- Example: The/DET man/NN sleeps/VBZ
 - count collection
 - count(the,DET)++
 - count(man,NN)++
 - count(sleeps,VBZ)++
 - evidence for probability distributions (max. likelihood estimation)
 - p(DET|the), p(the|DET)
 - p(NN|man), p(man|NN)
 - p(VBZ|sleeps), p(sleeps|VBZ)
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

Phrase-based translation

- Task: *translate this sentence* from German into English

er geht ja nicht nach hause
Translation step 1

- Task: translate this sentence from German into English

\[
er \quad \text{geht} \quad \text{ja} \quad \text{nicht} \quad \text{nach} \quad \text{hause}
\]

- Pick phrase in input, translate

Translation step 2

- Task: translate this sentence from German into English

\[
er \quad \text{geht} \quad \text{ja} \quad \text{nicht} \quad \text{nach} \quad \text{hause}
\]

- Pick phrase in input, translate
 - it is allowed to pick words \textit{out of sequence} (reordering)
 - phrases may have multiple words: \textit{many-to-many} translation
Translation step 3

- Task: translate this sentence from German into English

er geht ja nicht nach hause

- Pick phrase in input, translate

Translation step 4

- Task: translate this sentence from German into English

er geht ja nicht nach hause

- Pick phrase in input, translate
Translation options

<table>
<thead>
<tr>
<th>he</th>
<th>is</th>
<th>not</th>
<th>after</th>
<th>house</th>
</tr>
</thead>
<tbody>
<tr>
<td>it</td>
<td>are</td>
<td>do not</td>
<td>to</td>
<td>home</td>
</tr>
<tr>
<td>, it</td>
<td>goes</td>
<td>does not</td>
<td>according to</td>
<td>chamber</td>
</tr>
<tr>
<td>, he</td>
<td>go</td>
<td>is not</td>
<td>in</td>
<td>at home</td>
</tr>
<tr>
<td>it is</td>
<td>not</td>
<td>under house</td>
<td>do not</td>
<td>return home</td>
</tr>
<tr>
<td>he will be</td>
<td>is not</td>
<td>do not</td>
<td>do not</td>
<td>do not</td>
</tr>
<tr>
<td>it goes</td>
<td>does not</td>
<td>to</td>
<td>to</td>
<td>return home</td>
</tr>
<tr>
<td>he goes</td>
<td>do not</td>
<td>to</td>
<td>to</td>
<td>to</td>
</tr>
</tbody>
</table>

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Translation options

<table>
<thead>
<tr>
<th>he</th>
<th>is</th>
<th>not</th>
<th>after</th>
<th>house</th>
</tr>
</thead>
<tbody>
<tr>
<td>it</td>
<td>are</td>
<td>do not</td>
<td>to</td>
<td>home</td>
</tr>
<tr>
<td>, it</td>
<td>goes</td>
<td>does not</td>
<td>according to</td>
<td>chamber</td>
</tr>
<tr>
<td>, he</td>
<td>go</td>
<td>is not</td>
<td>in</td>
<td>at home</td>
</tr>
<tr>
<td>it is</td>
<td>not</td>
<td>under house</td>
<td>do not</td>
<td>return home</td>
</tr>
<tr>
<td>he will be</td>
<td>is not</td>
<td>do not</td>
<td>do not</td>
<td>do not</td>
</tr>
<tr>
<td>it goes</td>
<td>does not</td>
<td>to</td>
<td>to</td>
<td>return home</td>
</tr>
<tr>
<td>he goes</td>
<td>do not</td>
<td>to</td>
<td>to</td>
<td>to</td>
</tr>
</tbody>
</table>

- The machine translation decoder does not know the right answer
 → Search problem solved by heuristic beam search
Decoding process: precompute translation options

Decoding process: start with initial hypothesis
Decoding process: hypothesis expansion

er geht ja nicht nach hause

Decoding process: hypothesis expansion

he
are

Decoding process: hypothesis expansion

he
are
it
Decoding process: hypothesis expansion

Decoding process: find best path
Factored model decoding

- Factored model decoding introduces additional complexity.
- Hypothesis expansion not any more according to simple translation table, but by executing a number of mapping steps, e.g.:
 1. translating of lemma → lemma
 2. translating of part-of-speech, morphology → part-of-speech, morphology
 3. generation of surface form
- Example: \textit{haus} | NN | neutral | plural | nominative
 → \{ \textit{houses}, \textit{house} | NN | plural, \textit{homes}, \textit{home} | NN | plural, \textit{buildings}, \textit{building} | NN | plural, \textit{shells}, \textit{shell} | NN | plural \}
- Each time, a hypothesis is expanded, these mapping steps have to applied.

Efficient factored model decoding

- Key insight: executing of mapping steps can be pre-computed and stored as translation options:
 - apply mapping steps to all input phrases
 - store results as translation options
 → decoding algorithm unchanged.
Efficient factored model decoding

- Problem: *Explosion* of translation options
 - originally limited to 20 per input phrase
 - even with simple model, now 1000s of mapping expansions possible

- Solution: *Additional pruning* of translation options
 - *keep only the best* expanded translation options
 - current default 50 per input phrase
 - decoding only about 2-3 times slower than with surface model

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- *Experiments*
- Outlook
Adding linguistic markup to output

Input Output

- Generation of POS tags on the target side
- Use of high order language models over POS (7-gram, 9-gram)
- Motivation: syntactic tags should enforce syntactic sentence structure model not strong enough to support major restructuring

Some experiments

- English–German, Europarl, 30 million word, test2006

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>best published result</td>
<td>18.15</td>
</tr>
<tr>
<td>baseline (surface)</td>
<td>18.04</td>
</tr>
<tr>
<td>surface + POS</td>
<td>18.15</td>
</tr>
</tbody>
</table>

- German–English, News Commentary data (WMT 2007), 1 million word

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
</tr>
</tbody>
</table>

- Improvements under sparse data conditions
- Similar results with CCG supertags [Birch et al., 2007]
Sequence models over morphological tags

- Violation of noun phrase agreement in gender
 - *das schwarze* and *schwarze Himmel* are perfectly fine bigrams
 - but: *das schwarze Himmel* is not

- If relevant n-grams does not occur in the corpus, a lexical n-gram model would fail to detect this mistake

- Morphological sequence model: \(p(N\text{-}male|J\text{-}male) > p(N\text{-}male|J\text{-}neutral) \)

Local agreement (esp. within noun phrases)

- High order language models over POS and morphology

- Motivation
 - *DET-sgl NOUN-sgl* good sequence
 - *DET-sgl NOUN-plural* bad sequence
Agreement within noun phrases

- Experiment: 7-gram POS, morph LM in addition to 3-gram word LM
- Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Agreement errors in NP</th>
<th>devtest</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>15% in NP ≥ 3 words</td>
<td>18.22 BLEU</td>
<td>18.04 BLEU</td>
</tr>
<tr>
<td>factored model</td>
<td>4% in NP ≥ 3 words</td>
<td>18.25 BLEU</td>
<td>18.22 BLEU</td>
</tr>
</tbody>
</table>

- Example
 - baseline: ... zur zwischenstaatlichen methoden ...
 - factored model: ... zu zwischenstaatlichen methoden ...

- Example
 - baseline: ... das zweite wichtige änderung ...
 - factored model: ... die zweite wichtige änderung ...

Morphological generation model

- Our motivating example
- Translating lemma and morphological information more robust
Initial results

- Results on 1 million word News Commentary corpus (German–English)

<table>
<thead>
<tr>
<th>System</th>
<th>In-domain</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
<td>15.01</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
<td>15.03</td>
</tr>
<tr>
<td>Morphgen model</td>
<td>14.38</td>
<td>11.65</td>
</tr>
</tbody>
</table>

- What went wrong?
 - why back-off to lemma, when we know how to translate surface forms?
 → loss of information

Solution: alternative decoding paths

- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off
Results

- Model now beats the baseline:

<table>
<thead>
<tr>
<th>System</th>
<th>In-doman</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
<td>15.01</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
<td>15.03</td>
</tr>
<tr>
<td>Morphgen model</td>
<td>14.38</td>
<td>11.65</td>
</tr>
<tr>
<td>Both model paths</td>
<td>19.47</td>
<td>15.23</td>
</tr>
</tbody>
</table>

Adding annotation to the source

- Source words may lack sufficient information to map phrases
 - English-German: what case for noun phrases?
 - Chinese-English: plural or singular
 - pronoun translation: what do they refer to?

- Idea: add additional information to the source that makes the required information available locally (where it is needed)

- see [Avramidis and Koehn, ACL 2008] for details
Case Information for English–Greek

• Detect in English, if noun phrase is subject/object (using parse tree)
• Map information into case morphology of Greek
• Use case morphology to generate correct word form

Obtaining Case Information

• Use syntactic parse of English input
 (method similar to semantic role labeling)
Results English-Greek

- Automatic BLEU scores

<table>
<thead>
<tr>
<th>System</th>
<th>devtest</th>
<th>test07</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>18.13</td>
<td>18.05</td>
</tr>
<tr>
<td>enriched</td>
<td>18.21</td>
<td>18.20</td>
</tr>
</tbody>
</table>

- Improvement in verb inflection

<table>
<thead>
<tr>
<th>System</th>
<th>Verb count</th>
<th>Errors</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>311</td>
<td>19.0%</td>
<td>7.4%</td>
</tr>
<tr>
<td>enriched</td>
<td>294</td>
<td>5.4%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

- Improvement in noun phrase inflection

<table>
<thead>
<tr>
<th>System</th>
<th>NPs</th>
<th>Errors</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>247</td>
<td>8.1%</td>
<td>3.2%</td>
</tr>
<tr>
<td>enriched</td>
<td>239</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

- Also successfully applied to English-Czech

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work
Using POS in reordering

- **Reordering** is often due to syntactic reasons
 - French-English: *NN ADJ → ADJ NN*
 - Chinese-English: *NN1 F NN2 → NN1 NN2*
 - Arabic-English: *VB NN → NN VB*

- Extension of lexicalized reordering model
 - already have model that learns $p(\text{monotone}|\text{bleue})$
 - can be extended to $p(\text{monotone}|\text{ADJ})$

- Gains in preliminary experiments

Shallow syntactic features

- Shallow syntactic tasks have been formulated as sequence labeling tasks
 - base noun phrase chunking
 - syntactic role labeling
Long range reordering

- **Long range** reordering
 - movement often not limited to local changes
 - German-English: \textit{SBJ AUX OBJ V} \rightarrow \textit{SBJ AUX V OBJ}

- **Asynchronous** models
 - some factor mappings (POS, syntactic chunks) may have longer scope than others (words)
 - larger mappings form template for shorter mappings
 - computational problems with this

Discriminative Training
Overview

- Evolution from generative to discriminative models
 - IBM Models: purely generative
 - MERT: discriminative training of generative components
 - More features → better discriminative training needed
- Perceptron algorithm
- Problem: overfitting
- Problem: matching reference translation

The birth of SMT: generative models

- The definition of translation probability follows a mathematical derivation
 \[
 \text{argmax}_{\mathbf{e}} p(\mathbf{e}|\mathbf{f}) = \text{argmax}_{\mathbf{e}} p(\mathbf{f}|\mathbf{e}) \ p(\mathbf{e})
 \]
- Occasionally, some independence assumptions are thrown in
 for instance IBM Model 1: word translations are independent of each other
 \[
 p(\mathbf{e}|\mathbf{f}, \mathbf{a}) = \frac{1}{Z} \prod_{i} p(e_i|f_{a(i)})
 \]
- Generative story leads to straight-forward estimation
 - maximum likelihood estimation of component probability distribution
 - EM algorithm for discovering hidden variables (alignment)
Log-linear models

- IBM Models provided mathematical justification for factoring components together

\[p_{LM} \times p_{TM} \times p_D \]

- These may be weighted

\[p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_D^{\lambda_{D}} \]

- Many components \(p_i \) with weights \(\lambda_i \)

\[\prod_i p_i^{\lambda_i} = \exp(\sum_i \lambda_i \log(p_i)) \]

\[\log(\prod_i p_i^{\lambda_i}) = \sum_i \lambda_i \log(p_i) \]

Knowledge sources

- Many different knowledge sources useful
 - language model
 - reordering (distortion) model
 - phrase translation model
 - word translation model
 - word count
 - phrase count
 - drop word feature
 - phrase pair frequency
 - additional language models
 - additional features
Set feature weights

- Contribution of components p_i determined by weight λ_i
- Methods
 - manual setting of weights: try a few, take best
 - automate this process
- Learn weights
 - set aside a development corpus
 - set the weights, so that optimal translation performance on this development corpus is achieved
 - requires automatic scoring method (e.g., BLEU)

 Discriminative training

Model

- generate n-best list
- score translations
- find feature weights that move up good translations
- change feature weights

Discriminative vs. generative models

- Generative models
 - translation process is broken down to steps
 - each step is modeled by a probability distribution
 - each probability distribution is estimated from the data by maximum likelihood

- Discriminative models
 - model consist of a number of features (e.g. the language model score)
 - each feature has a weight, measuring its value for judging a translation as correct
 - feature weights are optimized on development data, so that the system output matches correct translations as close as possible

Discriminative training

- Training set (development set)
 - different from original training set
 - small (maybe 1000 sentences)
 - must be different from test set

- Current model translates this development set
 - n-best list of translations (n=100, 10000)
 - translations in n-best list can be scored

- Feature weights are adjusted

- N-Best list generation and feature weight adjustment repeated for a number of iterations
Learning task

• Task: find weights, so that feature vector of the correct translations ranked first

<table>
<thead>
<tr>
<th>TRANSLATION</th>
<th>LM</th>
<th>TM</th>
<th>WP</th>
<th>SER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mary not give slap witch green .</td>
<td>-17.2</td>
<td>-5.2</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>2 Mary not slap the witch green .</td>
<td>-16.3</td>
<td>-5.7</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>3 Mary not give slap of the green witch .</td>
<td>-18.1</td>
<td>-4.9</td>
<td>-6</td>
<td>1</td>
</tr>
<tr>
<td>4 Mary not give of green witch .</td>
<td>-16.5</td>
<td>-5.1</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>5 Mary did not slap the witch green .</td>
<td>-20.1</td>
<td>-4.7</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>6 Mary did not slap green witch .</td>
<td>-15.5</td>
<td>-3.2</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>7 Mary not slap of the witch green .</td>
<td>-19.2</td>
<td>-5.3</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>8 Mary did not give slap of witch green .</td>
<td>-23.2</td>
<td>-5.0</td>
<td>-9</td>
<td>1</td>
</tr>
<tr>
<td>9 Mary did not give slap of the green witch .</td>
<td>-21.8</td>
<td>-4.4</td>
<td>-10</td>
<td>1</td>
</tr>
<tr>
<td>10 Mary did slap the witch green .</td>
<td>-15.5</td>
<td>-6.9</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>11 Mary did not slap the green witch .</td>
<td>-17.4</td>
<td>-5.3</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>12 Mary did slap witch green .</td>
<td>-16.9</td>
<td>-5.3</td>
<td>-6</td>
<td>1</td>
</tr>
<tr>
<td>13 Mary did slap the green witch .</td>
<td>-16.3</td>
<td>-6.9</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>14 Mary did not slap the of green witch .</td>
<td>-24.2</td>
<td>-5.3</td>
<td>-9</td>
<td>1</td>
</tr>
<tr>
<td>15 Mary did not give slap the witch green .</td>
<td>-25.2</td>
<td>-5.5</td>
<td>-9</td>
<td>1</td>
</tr>
</tbody>
</table>

Rank translation

Och’s minimum error rate training (MERT)

• Line search for best feature weights

given: sentences with n-best list of translations
iterate n times
randomize starting feature weights
iterate until convergences
for each feature
find best feature weight
update if different from current
return best feature weights found in any iteration
Methods to adjust feature weights

- **Maximum entropy** [Och and Ney, ACL2002]
 - match expectation of feature values of model and data
- **Minimum error rate** training [Och, ACL2003]
 - try to *rank best translations first* in n-best list
 - can be adapted for various error metrics, even BLEU
- **Ordinal regression** [Shen et al., NAACL2004]
 - *separate* k worst from the k best translations

BLEU error surface

- Varying one parameter: a rugged line with many local optima
Unstable outcomes: weights vary

<table>
<thead>
<tr>
<th>component</th>
<th>run 1</th>
<th>run 2</th>
<th>run 3</th>
<th>run 4</th>
<th>run 5</th>
<th>run 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>0.059531</td>
<td>0.071025</td>
<td>0.069061</td>
<td>0.120828</td>
<td>0.120828</td>
<td>0.072891</td>
</tr>
<tr>
<td>lexdist 1</td>
<td>0.093565</td>
<td>0.044724</td>
<td>0.097312</td>
<td>0.108922</td>
<td>0.108922</td>
<td>0.062684</td>
</tr>
<tr>
<td>lexdist 2</td>
<td>0.021165</td>
<td>0.008882</td>
<td>0.008607</td>
<td>0.013950</td>
<td>0.013950</td>
<td>0.030890</td>
</tr>
<tr>
<td>lexdist 3</td>
<td>0.083298</td>
<td>0.049741</td>
<td>0.024822</td>
<td>-0.000598</td>
<td>-0.000598</td>
<td>0.023018</td>
</tr>
<tr>
<td>lexdist 4</td>
<td>0.051842</td>
<td>0.108107</td>
<td>0.090298</td>
<td>0.111243</td>
<td>0.111243</td>
<td>0.047508</td>
</tr>
<tr>
<td>lexdist 5</td>
<td>0.043290</td>
<td>0.047801</td>
<td>0.020211</td>
<td>0.028672</td>
<td>0.028672</td>
<td>0.050748</td>
</tr>
<tr>
<td>lexdist 6</td>
<td>0.083848</td>
<td>0.056161</td>
<td>0.103767</td>
<td>0.032869</td>
<td>0.032869</td>
<td>0.050240</td>
</tr>
<tr>
<td>lm 1</td>
<td>0.042750</td>
<td>0.056124</td>
<td>0.052090</td>
<td>0.049561</td>
<td>0.049561</td>
<td>0.059518</td>
</tr>
<tr>
<td>lm 2</td>
<td>0.019881</td>
<td>0.012075</td>
<td>0.022896</td>
<td>0.035769</td>
<td>0.035769</td>
<td>0.026414</td>
</tr>
<tr>
<td>lm 3</td>
<td>0.059497</td>
<td>0.054580</td>
<td>0.044363</td>
<td>0.048321</td>
<td>0.048321</td>
<td>0.056282</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.052111</td>
<td>0.045906</td>
<td>0.046655</td>
<td>0.054519</td>
<td>0.054519</td>
<td>0.046538</td>
</tr>
<tr>
<td>ttable 2</td>
<td>0.052888</td>
<td>0.036831</td>
<td>0.040820</td>
<td>0.058003</td>
<td>0.058003</td>
<td>0.066308</td>
</tr>
<tr>
<td>ttable 3</td>
<td>0.042151</td>
<td>0.066256</td>
<td>0.043265</td>
<td>0.047271</td>
<td>0.047271</td>
<td>0.052853</td>
</tr>
<tr>
<td>ttable 4</td>
<td>0.034067</td>
<td>0.031048</td>
<td>0.050794</td>
<td>0.037589</td>
<td>0.037589</td>
<td>0.031939</td>
</tr>
<tr>
<td>phrase-pen.</td>
<td>0.059151</td>
<td>0.062019</td>
<td>-0.037950</td>
<td>0.023414</td>
<td>0.023414</td>
<td>-0.069425</td>
</tr>
<tr>
<td>word-pen.</td>
<td>-0.200963</td>
<td>-0.249531</td>
<td>-0.247089</td>
<td>-0.228469</td>
<td>-0.228469</td>
<td>-0.252579</td>
</tr>
</tbody>
</table>

Unstable outcomes: scores vary

- Even different scores with different runs (varying 0.40 on dev, 0.89 on test)

<table>
<thead>
<tr>
<th>run</th>
<th>iterations</th>
<th>dev score</th>
<th>test score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>50.16</td>
<td>51.99</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>50.26</td>
<td>51.78</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>50.13</td>
<td>51.59</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>50.10</td>
<td>51.20</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>50.16</td>
<td>51.43</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>50.02</td>
<td>51.66</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>50.25</td>
<td>51.10</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>50.21</td>
<td>51.32</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>50.42</td>
<td>51.79</td>
</tr>
</tbody>
</table>
More features: more components

- We would like to add **more components** to our model
 - multiple language models
 - domain adaptation features
 - various special handling features
 - using linguistic information

→ MERT becomes even **less reliable**
 - runs many more iterations
 - fails more frequently

More features: factored models

- Factored translation models break up phrase mapping into smaller steps
 - multiple translation tables
 - multiple generation tables
 - multiple language models and sequence models on factors

→ **Many more features**
Millions of features

- Why mix of discriminative training and generative models?
- Discriminative training of all components
 - phrase table [Liang et al., 2006]
 - language model [Roark et al., 2004]
 - additional features
- Large-scale discriminative training
 - millions of features
 - training of full training set, not just a small development corpus

Perceptron algorithm

- Translate each sentence
- If no match with reference translation: update features

```plaintext
set all lambda = 0
do until convergence
  for all foreign sentences f
    set e-best to best translation according to model
    set e-ref to reference translation
    if e-best != e-ref
      for all features feature-i
        lambda-i += feature-i(f,e-ref)
        - feature-i(f,e-best)
```
Problem: overfitting

- Fundamental problem in machine learning
 - what works best for training data, may not work well in general
 - rare, unrepresentative features may get too much weight
- Especially severe problem in phrase-based models
 - long phrase pairs explain well individual sentences
 - ... but are less general, suspect to noise
 - EM training of phrase models [Marcu and Wong, 2002] has same problem

Solutions

- Restrict to short phrases, e.g., maximum 3 words (current approach)
 - limits the power of phrase-based models
 - ... but not very much [Koehn et al, 2003]
- Jackknife
 - collect phrase pairs from one part of corpus
 - optimize their feature weights on another part
- IBM direct model: only one-to-many phrases [Ittycheriah and Salim Roukos, 2007]
Problem: reference translation

- Reference translation may be anywhere in this box

![Diagram showing all English sentences, produceable by model, and covered by search]

- If produceable by model → we can compute feature scores
- If not → we can not

Some solutions

- **Skip sentences**, for which reference can not be produced
 - invalidates large amounts of training data
 - biases model to shorter sentences
- Declare candidate translations closest to reference as **surrogate**
 - closeness measured for instance by smoothed BLEU score
 - may be not a very good translation: odd feature values, training is severely distorted
Experiment

- Skipping sentences with unproduceable reference **hurts**

<table>
<thead>
<tr>
<th>Handling of reference</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>with skipping</td>
<td>25.81</td>
</tr>
<tr>
<td>w/o skipping</td>
<td>29.61</td>
</tr>
</tbody>
</table>

- When including all sentences: surrogate reference picked from 1000-best list using maximum *smoothed BLEU score* with respect to reference translation

- Czech-English task, **only binary features**
 - phrase table features
 - lexicalized reordering features
 - source and target phrase bigram
- See also [Liang et al., 2006] for similar approach

Better solution: early updating?

- At some point the reference translation **falls out** of the search space
 - for instance, due to *unknown words*:

 Reference: The group attended the meeting in Najaf ...
 System: The group meeting was attended in UNKNOWN ...

 only update features involved in this part

- Early updating [Collins et al., 2005]:
 - stop search, when reference translation is not covered by model
 - only update **features involved in partial** reference / system output
Conclusions

• Currently have proof-of-concept implementation

• Future work: Overcome various technical challenges
 – reference translation may not be produceable
 – overfitting
 – mix of binary and real-valued features
 – scaling up

• More and more features are unavoidable, let’s deal with them