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p(lose | Win or)� p(loose | Win or)

[Church et al, 2007]
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p(Another one bites the dust.)
>

p(Another one rides the bus.)
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Prediction Spelling Translation Speech

Essential Component: Language Model
p(in the raw) = ?

Introduction Smoothing Estimating Querying Conclusion
10



Language model: fluency of output

7 Number of phrase pairs used to translate
7 IBM model 1

3 Length
3 Ratio of letter “z” to letter “e”

3 Parsing
3 Sequence Models
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Parsing

S

NP

N

Moses

VP

V

compiles

p(S→ NP VP)

·p(NP→ N)p(VP→ V)

·p(N→ Moses)p(V→ compiles)

p(Moses compiles) =
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Sequence Models

p(Moses compiles)=p(Moses)p(compiles | Moses)

Chain Rule
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Sequence Model

log p(iran | <s> )= -3.33437
log p(is | <s> iran )= -1.05931
log p(one | <s> iran is )= -1.80743
log p(of | <s> iran is one )= -0.03705
log p(the | <s> iran is one of )= -0.08317
log p(few | <s> iran is one of the )= -1.20788
log p(countries | <s> iran is one of the few )= -1.62030
log p(. | <s> iran is one of the few countries )= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688

= log p(<s> iran is one of the few countries . </s> )= -11.79900

Explicit begin and end of sentence.
Where do these probabilities come from?

Introduction Smoothing Estimating Querying Conclusion
15



Sequence Model

log p(iran | <s> )= -3.33437
log p(is | <s> iran )= -1.05931
log p(one | <s> iran is )= -1.80743
log p(of | <s> iran is one )= -0.03705
log p(the | <s> iran is one of )= -0.08317
log p(few | <s> iran is one of the )= -1.20788
log p(countries | <s> iran is one of the few )= -1.62030
log p(. | <s> iran is one of the few countries )= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688

= log p(<s> iran is one of the few countries . </s> )= -11.79900

Explicit begin and end of sentence.

Where do these probabilities come from?

Introduction Smoothing Estimating Querying Conclusion
16



Sequence Model

log p(iran | <s> )= -3.33437
log p(is | <s> iran )= -1.05931
log p(one | <s> iran is )= -1.80743
log p(of | <s> iran is one )= -0.03705
log p(the | <s> iran is one of )= -0.08317
log p(few | <s> iran is one of the )= -1.20788
log p(countries | <s> iran is one of the few )= -1.62030
log p(. | <s> iran is one of the few countries )= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688

= log p(<s> iran is one of the few countries . </s> )= -11.79900

Explicit begin and end of sentence.

Where do these probabilities come from?
Introduction Smoothing Estimating Querying Conclusion

17



Probabilities from Text

p(raw | in the)
Model
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Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
4

p(Ugrasena | in the) ≈ 0
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Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
6

p(Ugrasena | in the) ≈ 1
1000
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Smoothing
“in the Ugrasena” was not seen, but could happen.

1 Neural Networks:: classifier predicts next word
2 Backoff: maybe “the Ugrasena” was seen?
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Language Modeling

1 Smoothing
Neural Networks

Backoff

2 Implementation Issues

Introduction Smoothing Estimating Querying Conclusion
23



Turning Words into Vectors


1

0

0

0


<s> 

0

1

0

0


compile 

0

0

1

0


Moses 

0

0

0

1


why

Assign each word a unique row.
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Recurrent Neural Network


1
0
0
0


<s>

0
0
0


Neural
Net

Word

State

p(<s>) =

0

p(compile) = 0.4
p(Moses) = 0.2
p(why) = 0.4


0
0
0
1


why

2.1
−4
0.3



Neural
Net
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Recurrent Neural Network Properties

Treat language modeling as a classification problem:
Predict the next word.

State uses the entire context back to the beginning:
Not forgetful like backoff.
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Turning Words into Vectors

− 3

1.5

6.2


<s>  2.2

7.5

−.8


compile − .1

0.8

9.1


Moses  1.1

7.0

−.2


why

Vectors from a recurrent neural network.
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Neural N-gram Models

p(compile | Vector(why),Vector(Moses))

Vectors for context words

→ neural network classifier

→ probability distribution over words
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Language Modeling

1 Smoothing

Neural Networks

Backoff
2 Implementation Issues
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Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) ≈ p(Ugrasena | the)

b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) ≈ p(Ugrasena)

b(the)

Backoff b is a penalty for not matching context.
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Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) = p(Ugrasena | the)b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) = p(Ugrasena)b(the)

Backoff b is a penalty for not matching context.
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Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3
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Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Query : p(of | iran is)
log p(of) −2.5
log b(is) −1.4
log b(iran is) + −0.4

log p(of | iran is) = −4.3
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Close words matter more.

Doubts
Grammatical structure

Topical coherence

Words tend to repeat

Tomorrow: Bonnie Webber on discourse

Alternative: skip over words in the context
[Pickhardt et al, ACL 2014]

Introduction Smoothing Estimating Querying Conclusion
37



Language Modeling

1 Smoothing

Neural Networks

Backoff

2 Implementation Issues

Introduction Smoothing Estimating Querying Conclusion
38



Stupid Backoff

1 Count n-grams offline

count(wn
1 )

2 Compute pseudo-probabilities at runtime

stupid(wn | wn−1
1 ) =


count(wn

1 )

count(wn−1
1 )

if count(wn
1 ) > 0

0.4stupid(wn | wn−1
2 ) if count(wn

1 ) = 0

Note: stupid does not sum to 1.

[Brants et al, 2007]
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Counting n-grams

<s> Australia is one of the few

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1

Hash table from n-gram to count.
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Query

stupid(wn | wn−1
1 ) =


count(wn

1 )

count(wn−1
1 )

if count(wn
1 ) > 0

0.4stupid(wn | wn−1
2 ) if count(wn

1 ) = 0

stupid(few | is one of the)

count(is one of the few) = 5 3

count(is one of the) = 12
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Query

stupid(wn | wn−1
1 ) =


count(wn

1 )

count(wn−1
1 )

if count(wn
1 ) > 0

0.4stupid(wn | wn−1
2 ) if count(wn

1 ) = 0

stupid(periwinkle | is one of the)

count(is one of the periwinkle) = 0 7
count(one of the periwinkle) = 0 7

count(of the periwinkle) = 0 7
count(the periwinkle) = 3 3

count(the) = 1000
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What’s Left?

Hash table uses too much RAM

Non-“stupid” smoothing methods (e.g. Kneser-Ney)
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Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of”.

Ignore collisions.

Birthday attack:
√
264 = 232.

=⇒ Low chance of collision until ≈ 4 billion entries.
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Default Hash Table

boost::unordered map and gnu cxx::hash map

0 1 2 3 4 5

Bucket array

n-grams

Lookup requires two random memory accesses.
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Linear Probing Hash Table

1.5 buckets/entry (so buckets = 6).

Ideal bucket = hash mod buckets.

Resolve bucket collisions using the next free bucket.

Bigrams
Words Ideal Hash Count
iran is 0 0x959e48455f4a2e90 3

0x0 0
is one 2 0x186a7caef34acf16 5
one of 2 0xac66610314db8dac 2
<s> iran 4 0xf0ae9c2442c6920e 1

0x0 0

Introduction Smoothing Estimating Querying Conclusion
49



Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Estimating Querying Conclusion
50



Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Estimating Querying Conclusion
51



Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Estimating Querying Conclusion
52



Sorted Array

Sort n-grams, perform binary search.

Binary search is O(|n-grams| log |n-grams|).

Interpolation search is O(|n-grams| log log |n-grams|)
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Entries

probing
hash set
unordered set
interpolation
binary search
set
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Trie

Reverse n-grams, arrange in a trie.

Australia <s>

are

one
are

is Australia
is Australia <s>

<s>

of one
are

is

Introduction Smoothing Estimating Querying Conclusion
56



Saving More RAM

Quantization: store approximate values

Collapse probability and backoff
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Implementation Summary

Implementation involves sparse mapping

Hash table

Probing hash table

Minimal perfect hash table

Sorted array with binary or interpolation search
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Conclusion

Language models measure fluency.

Neural networks and backoff are the dominant formalisms.

Efficient implementation needs good data structures.
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