
Language Modeling

Kenneth Heafield
Bloomberg

p(type | Predictive) > p(Tyler | Predictive)

Introduction Smoothing Estimating Querying Conclusion
2

p(type | Predictive) > p(Tyler | Predictive)

Introduction Smoothing Estimating Querying Conclusion
3

p(lose | Win or)� p(loose | Win or)

[Church et al, 2007]

Introduction Smoothing Estimating Querying Conclusion
4

présidente de la

Chambre

des représentants

Bedroom

of Representativestheofchairwoman

p(chairwoman of the House of Representatives)

>

p(chairwoman of the Bedroom of Representatives)

Introduction Smoothing Estimating Querying Conclusion
5

présidente de la Chambre des représentants

Bedroom of Representativestheofchairwoman

p(chairwoman of the House of Representatives)

>

p(chairwoman of the Bedroom of Representatives)

Introduction Smoothing Estimating Querying Conclusion
6

présidente de la Chambre des représentants

House of Representativestheofchairwoman

p(chairwoman of the House of Representatives)

>

p(chairwoman of the Bedroom of Representatives)

Introduction Smoothing Estimating Querying Conclusion
7

présidente de la Chambre des représentants

House of Representativestheofchairwoman

p(chairwoman of the House of Representatives)

>

p(chairwoman of the Bedroom of Representatives)

Introduction Smoothing Estimating Querying Conclusion
8

p(Another one bites the dust.)
>

p(Another one rides the bus.)

Introduction Smoothing Estimating Querying Conclusion
9

Prediction Spelling Translation Speech

Essential Component: Language Model
p(in the raw) = ?

Introduction Smoothing Estimating Querying Conclusion
10

Language model: fluency of output

7 Number of phrase pairs used to translate
7 IBM model 1

3 Length
3 Ratio of letter “z” to letter “e”

3 Parsing
3 Sequence Models

Introduction Smoothing Estimating Querying Conclusion
11

Language model: fluency of output

7 Number of phrase pairs used to translate
7 IBM model 1

3 Length
3 Ratio of letter “z” to letter “e”
3 Parsing
3 Sequence Models

Introduction Smoothing Estimating Querying Conclusion
12

Parsing

S

NP

N

Moses

VP

V

compiles

p(S→ NP VP)

·p(NP→ N)p(VP→ V)

·p(N→ Moses)p(V→ compiles)

p(Moses compiles) =

Introduction Smoothing Estimating Querying Conclusion
13

Sequence Models

p(Moses compiles)=p(Moses)p(compiles | Moses)

Chain Rule

Introduction Smoothing Estimating Querying Conclusion
14

Sequence Model

log p(iran | <s>)= -3.33437
log p(is | <s> iran)= -1.05931
log p(one | <s> iran is)= -1.80743
log p(of | <s> iran is one)= -0.03705
log p(the | <s> iran is one of)= -0.08317
log p(few | <s> iran is one of the)= -1.20788
log p(countries | <s> iran is one of the few)= -1.62030
log p(. | <s> iran is one of the few countries)= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688

= log p(<s> iran is one of the few countries . </s>)= -11.79900

Explicit begin and end of sentence.
Where do these probabilities come from?

Introduction Smoothing Estimating Querying Conclusion
15

Sequence Model

log p(iran | <s>)= -3.33437
log p(is | <s> iran)= -1.05931
log p(one | <s> iran is)= -1.80743
log p(of | <s> iran is one)= -0.03705
log p(the | <s> iran is one of)= -0.08317
log p(few | <s> iran is one of the)= -1.20788
log p(countries | <s> iran is one of the few)= -1.62030
log p(. | <s> iran is one of the few countries)= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688

= log p(<s> iran is one of the few countries . </s>)= -11.79900

Explicit begin and end of sentence.

Where do these probabilities come from?

Introduction Smoothing Estimating Querying Conclusion
16

Sequence Model

log p(iran | <s>)= -3.33437
log p(is | <s> iran)= -1.05931
log p(one | <s> iran is)= -1.80743
log p(of | <s> iran is one)= -0.03705
log p(the | <s> iran is one of)= -0.08317
log p(few | <s> iran is one of the)= -1.20788
log p(countries | <s> iran is one of the few)= -1.62030
log p(. | <s> iran is one of the few countries)= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688

= log p(<s> iran is one of the few countries . </s>)= -11.79900

Explicit begin and end of sentence.

Where do these probabilities come from?
Introduction Smoothing Estimating Querying Conclusion

17

Probabilities from Text

p(raw | in the)
Model

Introduction Smoothing Estimating Querying Conclusion
18

Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
4

p(Ugrasena | in the) ≈ 0

Introduction Smoothing Estimating Querying Conclusion
19

Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
4

p(Ugrasena | in the) ≈ 0

Introduction Smoothing Estimating Querying Conclusion
20

Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
6

p(Ugrasena | in the) ≈ 1
1000

Introduction Smoothing Estimating Querying Conclusion
21

Smoothing
“in the Ugrasena” was not seen, but could happen.

1 Neural Networks:: classifier predicts next word
2 Backoff: maybe “the Ugrasena” was seen?

Introduction Smoothing Estimating Querying Conclusion
22

Language Modeling

1 Smoothing
Neural Networks

Backoff

2 Implementation Issues

Introduction Smoothing Estimating Querying Conclusion
23

Turning Words into Vectors


1

0

0

0


<s> 

0

1

0

0


compile 

0

0

1

0


Moses 

0

0

0

1


why

Assign each word a unique row.

Introduction Smoothing Estimating Querying Conclusion
24

Recurrent Neural Network


1
0
0
0


<s>

0
0
0


Neural
Net

Word

State

p(<s>) =

0

p(compile) = 0.4
p(Moses) = 0.2
p(why) = 0.4


0
0
0
1


why

2.1
−4
0.3



Neural
Net

Introduction Smoothing Estimating Querying Conclusion
25

Recurrent Neural Network


1
0
0
0


<s>

0
0
0


Neural
Net

Word

State

p(<s>) =

0

p(compile) = 0.4
p(Moses) = 0.2
p(why) = 0.4


0
0
0
1


why

2.1
−4
0.3


Neural
Net

Introduction Smoothing Estimating Querying Conclusion
26

Recurrent Neural Network Properties

Treat language modeling as a classification problem:
Predict the next word.

State uses the entire context back to the beginning:
Not forgetful like backoff.

Introduction Smoothing Estimating Querying Conclusion
27

Turning Words into Vectors

− 3

1.5

6.2


<s>  2.2

7.5

−.8


compile − .1

0.8

9.1


Moses  1.1

7.0

−.2


why

Vectors from a recurrent neural network.

Introduction Smoothing Estimating Querying Conclusion
28

Neural N-gram Models

p(compile | Vector(why),Vector(Moses))

Vectors for context words

→ neural network classifier

→ probability distribution over words

Introduction Smoothing Estimating Querying Conclusion
29

Language Modeling

1 Smoothing

Neural Networks

Backoff
2 Implementation Issues

Introduction Smoothing Estimating Querying Conclusion
30

Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) ≈ p(Ugrasena | the)

b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) ≈ p(Ugrasena)

b(the)

Backoff b is a penalty for not matching context.

Introduction Smoothing Estimating Querying Conclusion
31

Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) ≈ p(Ugrasena | the)

b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) ≈ p(Ugrasena)

b(the)

Backoff b is a penalty for not matching context.

Introduction Smoothing Estimating Querying Conclusion
32

Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) = p(Ugrasena | the)b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) = p(Ugrasena)b(the)

Backoff b is a penalty for not matching context.

Introduction Smoothing Estimating Querying Conclusion
33

Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Introduction Smoothing Estimating Querying Conclusion
34

Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Query
log p(is | <s> iran) = −1.1

Introduction Smoothing Estimating Querying Conclusion
35

Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Query : p(of | iran is)
log p(of) −2.5
log b(is) −1.4
log b(iran is) + −0.4

log p(of | iran is) = −4.3

Introduction Smoothing Estimating Querying Conclusion
36

Close words matter more.

Doubts
Grammatical structure

Topical coherence

Words tend to repeat

Tomorrow: Bonnie Webber on discourse

Alternative: skip over words in the context
[Pickhardt et al, ACL 2014]

Introduction Smoothing Estimating Querying Conclusion
37

Language Modeling

1 Smoothing

Neural Networks

Backoff

2 Implementation Issues

Introduction Smoothing Estimating Querying Conclusion
38

Stupid Backoff

1 Count n-grams offline

count(wn
1)

2 Compute pseudo-probabilities at runtime

stupid(wn | wn−1
1) =


count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

Note: stupid does not sum to 1.

[Brants et al, 2007]

Introduction Smoothing Estimating Querying Conclusion
39

Stupid Backoff

1 Count n-grams offline

count(wn
1)

2 Compute pseudo-probabilities at runtime

stupid(wn | wn−1
1) =


count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

Note: stupid does not sum to 1.

[Brants et al, 2007]

Introduction Smoothing Estimating Querying Conclusion
40

Counting n-grams

<s> Australia is one of the few

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1

Hash table from n-gram to count.

Introduction Smoothing Estimating Querying Conclusion
41

Query

stupid(wn | wn−1
1) =


count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

stupid(few | is one of the)

count(is one of the few) = 5 3

count(is one of the) = 12

Introduction Smoothing Estimating Querying Conclusion
42

Query

stupid(wn | wn−1
1) =


count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

stupid(periwinkle | is one of the)

count(is one of the periwinkle) = 0 7
count(one of the periwinkle) = 0 7

count(of the periwinkle) = 0 7
count(the periwinkle) = 3 3

count(the) = 1000

Introduction Smoothing Estimating Querying Conclusion
43

What’s Left?

Hash table uses too much RAM

Non-“stupid” smoothing methods (e.g. Kneser-Ney)

Introduction Smoothing Estimating Querying Conclusion
44

Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of”.

Ignore collisions.

Birthday attack:
√
264 = 232.

=⇒ Low chance of collision until ≈ 4 billion entries.

Introduction Smoothing Estimating Querying Conclusion
45

Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of”.

Ignore collisions.

Birthday attack:
√
264 = 232.

=⇒ Low chance of collision until ≈ 4 billion entries.

Introduction Smoothing Estimating Querying Conclusion
46

Default Hash Table

boost::unordered map and gnu cxx::hash map

0 1 2 3 4 5

Bucket array

n-grams

Lookup requires two random memory accesses.

Introduction Smoothing Estimating Querying Conclusion
47

Default Hash Table

boost::unordered map and gnu cxx::hash map

0 1 2 3 4 5

Bucket array

n-grams

Lookup requires two random memory accesses.

Introduction Smoothing Estimating Querying Conclusion
48

Linear Probing Hash Table

1.5 buckets/entry (so buckets = 6).

Ideal bucket = hash mod buckets.

Resolve bucket collisions using the next free bucket.

Bigrams
Words Ideal Hash Count
iran is 0 0x959e48455f4a2e90 3

0x0 0
is one 2 0x186a7caef34acf16 5
one of 2 0xac66610314db8dac 2
<s> iran 4 0xf0ae9c2442c6920e 1

0x0 0

Introduction Smoothing Estimating Querying Conclusion
49

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Estimating Querying Conclusion
50

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Estimating Querying Conclusion
51

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Estimating Querying Conclusion
52

Sorted Array

Sort n-grams, perform binary search.

Binary search is O(|n-grams| log |n-grams|).

Interpolation search is O(|n-grams| log log |n-grams|)

Introduction Smoothing Estimating Querying Conclusion
53

Sorted Array

Sort n-grams, perform binary search.

Binary search is O(|n-grams| log |n-grams|).

Interpolation search is O(|n-grams| log log |n-grams|)

Introduction Smoothing Estimating Querying Conclusion
54

1

10

100

10 1000 100000 107

L
o
ok
u
p
s/
µ
s

Entries

probing
hash set
unordered set
interpolation
binary search
set

Introduction Smoothing Estimating Querying Conclusion
55

Trie

Reverse n-grams, arrange in a trie.

Australia <s>

are

one
are

is Australia
is Australia <s>

<s>

of one
are

is

Introduction Smoothing Estimating Querying Conclusion
56

Saving More RAM

Quantization: store approximate values

Collapse probability and backoff

Introduction Smoothing Estimating Querying Conclusion
57

Implementation Summary

Implementation involves sparse mapping

Hash table

Probing hash table

Minimal perfect hash table

Sorted array with binary or interpolation search

Introduction Smoothing Estimating Querying Conclusion
58

Conclusion

Language models measure fluency.

Neural networks and backoff are the dominant formalisms.

Efficient implementation needs good data structures.

Introduction Smoothing Estimating Querying Conclusion
59

	Introduction
	Smoothing
	Neural Networks
	Backoff

	Estimating
	Querying
	Conclusion

