Before we start...

» Start downloading Moses:

wget http://ufal.mff.cuni.cz/“tamchyna/mosesgiza.64bit.tar.gz

» Start downloading our “playground” for SMT:

wget http://ufal.mff.cuni.cz/eman/download/playground.tar

» Slides can be downloaded here:

http://ufal.mff.cuni.cz/"tamchyna/mtmi4.slides.pdf
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Outline

Quick overview of Moses.
Bird's eye view of (phrase-based) MT.
» With pointers to Moses repository.
Experiment management.
» Motivation.
» Overview of Eman.
Run your own experiments.
» Introduce Eman’s features through building
a baseline Czech—English MT system.
» Inspect the pipeline and created models.

v

v

v

v

» Try some techniques to improve over the baseline.
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Moses Toolkit

>

v

v

v

Comprehensive open-source toolkit for SMT

Core: phrase-based and syntactic decoder
Includes many related tools:
» Data pre-processing:
cleaning, sentence splitting, tokenization, ...
» Building models for translation:
create phrase/rule tables from word-aligned data,
train language models with KenLM
» Tuning translation systems (MERT and others)

You still need a tool for word alignment:
» GIZA++, fast_align, ...

Bundled with its own experiment manager EMS
» We will use a different one
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Bird's Eye View of Phrase-Based MT

[ Monolingual ] [ Parallel ] [ Devset ] [ Input ]
I I I I

Preprocessing: tokenization, tagging...

Word alignment
Phrase extraction

Language Translation M. (TM)
Model (LM) Reordering M. (RM)

moses. ini mniodel

Parameter optimization (MERT)
= “ \

nioses.ini_:é model Translate

moses—parallel.pl
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Now, This Complex World...
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..Has to Be Ruled by Someone
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Why Use an Experiment Manager?

» Automatic tracking of system configurations,
versions of software,. . .
= reproducibility of results
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Why Use an Experiment Manager?

» Automatic tracking of system configurations,
versions of software,. . .
= reproducibility of results

» Efficiency/convenience

» (MT) experiments are pipelines of complex components
= hide implementation details, provide a unified abstraction
» easily run many experiments in parallel
» Re-use of intermediate files

» different experiments may share e.g. the same language
model



Features of Eman

» Console-based = easily scriptable (e.g. in bash).
» Versatile: “seeds” are up to the user, any language.

» Support for the manual search through the space of
experiment configurations.

» Support for finding and marking (“tagging”) steps or
experiments of interest.

» Support for organizing the results in 2D tables.

» Integrated with SGE
= easy to run on common academic clusters.

eman --man will tell you some details.
http://ufal.mff.cuni.cz/eman/ has more.



Eman’s View

» Experiments consist of processing STEPS.
» Steps are:
» of a given type, e.g. align, tm, Im, mert,
» defined by immutable variables, e.g. ALISYM=gdfa,
» all located in one directory, the “playground”,
» timestamped unique directories, e.g.
s.mert.al123.20120215-1632
» self-contained in the dir as much as reasonable.
» dependent on other steps, e.g. first align, then build tm,

then mert.
DONE
. . v
Lifetime of a step: RUNNING
v ~a
seed » INITED » PREPARED FAILED
| S

PREPFAILED
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Why INITED—PREPARED—RUNNING?

The call to eman init seed-
» Should be quick, it is used interactively.
» Should only check and set vars, “turn a blank directory
into a valid eman step”.

The call to eman prepare s.step.123.20120215:
» May check for various input files.

» Less useful with heavy experiments where even corpus
preparation needs cluster.

» Has to produce eman.command.
= A chance to check it: are all file paths correct etc.?

The call to eman start s.step.123.20120215:
» Sends the job to the cluster.
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Our Eman Seeds for MT
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Our Eman Seeds for MT
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Parameter optimization (MERT)
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Eman’s Bells and Whistles

Experiment management:
» Is, vars, stat for simple listing,
select for finding steps,

v

v

traceback for full info on experiments,

v

redo failed experiments,
» clone individual steps as well as whole experiments.
Meta-information on steps:

v

status,
» tags, autotags,

v

collecting results,

v

tabulate for putting results into 2D tables.
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Whole Experiment = eman traceback
eman traceback s.evaluator.8102edfc.20120207-1611

+- s.evaluator.8102edfc.20120207-1611

+- s.mosesgiza.b6073a00.20120202-0037

+- s.translate.bl17£203d.20120207-1604

+- s.mert.272£2£67.20120207-0013

+- s.model.3e28def7.20120207-0013

| +- s5.1m.608df574.20120207-0004

| | +- s.srilm.117f0Ocfe.20120202-0037

| +- s.mosesgiza.b6073a00.20120202-0037

|  +- s5.tm.527c9342.20120207-0012

| | +- s.align.dec45f74.20120206-0111

| | | +- s.mosesgiza.b6073a00.20120202-0037
| | +- s.mosesgiza.b6073a00.20120202-0037
+- s.mosesgiza.b6073a00.20120202-0037

Options: --vars --stat --log ... --ignore=steptype
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Finding Steps: eman select

» Step dirs don't have nice names.
» You need to locate steps of given properties.

What language models do | have?
» eman Is Im
» eman select t Im

If we need just the finished ones:
» eman stat Im | grep DONE
» eman select t Im d

And just 5-gram ones for English:

» eman select t Im d vre ORDER=5 vre
CORPAUG=en
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Deriving Experiments using clone

The text form of traceback allows to tweak the experiment:

» eman tb step | sed 's/cs/de/’ | eman clone
replicates our experiment on German instead of Czech.
The regex substitution is available in eman itself:
» eman tb step -s '/cs/de/’ -s ' /form/Ic/’
shows the traceback with the substitutions highlighted.
» A good chance to check if the derivation does the intended.
» eman tb step -s /cs/de/’ -s */form/Ic/’ \\
| eman clone --dry-run

» Last chance to check if existing steps get reused and what
vars will new steps be based on.

» Drop --dry-run to actually init the new steps.

» Add --start if you're feeling lucky.
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Hacking Welcome

Eman is designed to be hacking-friendly:
» Self-contained steps are easy to inspect:
all logs are there,
all (or most of) input files are there,
the main code (eman.command) is there,
often, even the binaries are there, or at least clearly
identifiable.

v vV v VY

» Step halfway failed?
= Hack its eman.command and use eman continue.

» Seed not quite fit for your current needs?
= Just init the step and hack eman.seed.
= Or also prepare and hack eman.command.

Always mark manually tweaked steps, e.g. using eman’s tags.
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Fit for Cell-Phone SSH ©

» Experiments run long but fail often.
» You don’t want to be chained to a computer.

Most eman commands have a short nickname.

» How are my last 10 merts?
eman sel t mert | 10 --stat

Specify steps using any part of their name/hash or result:

» s.foobar.a0f3b123.20120215-1011 failed, retry it:
eman redo a0f3 --start

» How did | achieve this great BLEU score of 25.107
eman tb 25.10 --vars | less
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Fit for Team Work

Playgrounds can be effectively merged:
eman add-remote /home/fred/playground freds-exps

v

» You can re-interpret Fred's results.

v

You can clone Fred's experiments.
You can make your steps depend on Fred’s steps.
» Only a shared file system is needed.

v

Caveat: we don't bother checking for conflicts yet.
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Getting Started

“Install” eman in your home directory:
git clone https://redmine.ms.mff.cuni.cz/eman.git
Make sure eman is in your PATH: Bad things happen if not.

export PATH=$HOME/eman/bin/:$PATH
echo "export PATH=$HOME/eman/bin/:\$PATH" >> ~/.bashrc

Get our SMT Playground (with all the seeds):

git clone \
https://redmine.ms.mff.cuni.cz/ufal-smt-playground.git
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Fix Perl Dependencies
Set up a local Perl repository.

wget -0- http://cpanmin.us \

| perl - -1 /perlb5 App::cpanminus local::1lib

eval ‘perl -I /perl5/lib/perl5 -Mlocal::lib¢

echo ’eval ‘perl -I /perl5/lib/perld -Mlocal::lib‘’ >> /.bashrc

You can copy the answer from:
http://stackoverflow.com/a/2980715
(just replace .profile with .bashrc)

Install the required packages:
cpanm YAML: :XS

Confirm that eman runs:

eman —-man
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Setup Corpora

» Czech—English translation

» Training data: roughly 0.1% of CzEng 1.0
(15k sentence pairs)

» Dev set: 10% of WMT 2012 (300 sentence pairs)
» Test set: 10% WMT 2013 (300 sentence pairs)

Download the data:
http://bit.ly/mtml3corpora
Extract it into a subdirectory your playground, e.g.:

mkdir ~/ufal-smt-playground/playground/corpora
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Importing the Corpora

>

>

Every corpus has to “enter the world of eman”.
This can be done using the seed corpus.

“eman init corpus” requires the following variables:

>

v

v

v

v

TAKE_FROM_COMMAND command which produces the
corpus

OUTCORP corpus name
OUTLANG corpus language
QUTFACTS description of factors

QUTLINECQUNT number of lines that we are expecting
to get, used as a sanity check



Importing the Corpora

E.g. for training data, the Czech side:

TAKE FROM COMMAND="cat ../corpora/train.cs" \
OUTLINECOUNT=15000 \

OUTCORP=train OUTLANG=cs \
OUTFACTS=1lc+lemma+tag \

eman init --start corpus

%\ Inspect the step directory. Where is the corpus stored?
Create a bash script/ “one-liner” to import all corpora:
train/dev/test, cs/en (loop over sections and languages).

Did it work? Find out:

eman ls —--stat

Frequent mistake: wrong OUTLINECOUNT for dev and test.



Listing and Printing Corpora

Corpman links symbolic names with corpus steps:
./corpman ls # show all registered corpora

Corpman ensures uniform pre-processing:

./corpman train/cs+lemma --dump
# (Construct and) print the corpus as lemmas.

N\ Bonus: Calculate the OOV (out-of-vocabulary) rate of
the test data given the training data for:

» English vs. Czech and lowercase forms vs. lemmas

Use ufal-smt-playground/scripts/count-oov.pl or
oov.pl from Moses. (Or write your own.)



Compiling Moses

In eman’s philosophy, software is just data.
» Binaries should be compiled in timestamped step dirs.
» ...so we know the exact code that was used.

Compile Moses and GIZA++:

eman init --start mosesgiza

%\ Examine the step dir. Where is the compilation log?

Bonus (hard): Make another mosesgiza step where
Moses prints “O0OV" every time it encounters an
out-of-vocabulary word.



Getting Moses binaries

v

In your playground, download the binary:

wget http://ufal.mff.cuni.cz/“tamchyna/mosesgiza.64bit.tar.gz

v

Extract it:
tar xzf mosesgiza.64bit.tar.gz

Some hacking:

v

./fix-symlinks.sh
Let eman know what we did:

v

eman reindex



Baseline Experiment
In your playground:

wget http://ufal.mff.cuni.cz/ tamchyna/baseline.traceback
eman clone --start < baseline.traceback

%\ While the experiment runs:

» Make a copy of the traceback

» Modify it to train word alignment on lemmas instead
of Ic. (But preserve the translation lc—Ic!)

» Note that ALILABEL is somewhat arbitrary but has to match
between align and tm.

%\ Bonus: do the required edits using substitution in eman.
Hint: eman --man, look for the “traceback” command.
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Looking Inside the Models

» Go to one of your baseline model steps, look at files:
» Language model: 1m.1.corpus.lm.gz
%\ What is more probable: “united kingdom™ or “united states”?
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» Go to one of your baseline model steps, look at files:
» Language model: 1m.1.corpus.lm.gz

%\ What is more probable: “united kingdom™ or “united states”?
%\ Why are longer n-grams more probable than short ones?
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» Language model: 1m.1.corpus.lm.gz
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Looking Inside the Models

» Go to one of your baseline model steps, look at files:

» Language model: 1m.1.corpus.lm.gz
%\ What is more probable: “united kingdom™ or “united states”?
%\ Why are longer n-grams more probable than short ones?

» Phrase table: tm.1/model/phrase-table.0-0.gz
%\ How do you say “hi" in Czech?
N\ Phrase scores are P(f|e), lex(f|e), P(e|f), lex(e|f).

Given that, what do the counts in the last column mean?

(Let's look e.g. at the phrase “ahoj ||| hi".)
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Tuning

N\ How many iterations did MERT take?
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Tuning

N\ How many iterations did MERT take?
How did the BLEU score on the devset change?
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Tuning

N\ How many iterations did MERT take?
How did the BLEU score on the devset change?
How much disk space did your MERTs need?

» Standard Unix tool:
eman du -sh s.mert.*

» Eman status:
eman eman 1s mert —--dus —--stat
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Results

Let's compare MT quality (BLEU) of 2 systems:
» alignment on lowercase forms
» alignment on lemmas
%\ Look at evaluator steps. Which one is the baseline?
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» alignment on lemmas
%\ Look at evaluator steps. Which one is the baseline?

» Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

» Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*1c’)
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Results

Let's compare MT quality (BLEU) of 2 systems:
» alignment on lowercase forms
» alignment on lemmas
%\ Look at evaluator steps. Which one is the baseline?

» Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

» Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*1c’)

» Or just one select query:
eman sel t evaluator br t align vre ’SRC.x*1lc’

BLEU is in the “s.evaluator.../scores” file.
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Wild Experimenting

%\ Run word alignment on 1cstem4, 1cstemb.
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Wild Experimenting

%\ Run word alignment on 1cstem4, 1cstemb.

A Try different orders of the language model (3, 4, 6).
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%\ Try the opposite translation direction: English— Czech.
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Wild Experimenting

%\ Run word alignment on 1cstem4, 1cstemb.

A Try different orders of the language model (3, 4, 6).
N\ Translate from Czech lemmas into English forms (1c).
%\ Try the opposite translation direction: English— Czech.

%\ Set up a factored system:
» lc—lc (baseline path), and
» lemma—lc (alternative path).
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Summary

Hopefully, you now understand:

» within (PB)MT:

» the structure of a (PB)MT experiment,

» what is the language model and the translation model,
» meta-level:

» eman'’s organization of the experimentation playground,
» the idea of cloning of experiments.
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Extra Slides
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Eman is Versatile

What types of steps should | have?
» Any, depending on your application.
What language do | write steps in?
» Any, e.g. bash.
What are the input and output files of the steps?
» Any, just make depending steps understand each other.

» Steps can have many output files and serve as
prerequisites to different types of other steps.

What are measured values of my experiments?
» Anything from any of the files any step produces.
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What the User Implements: Just Seeds

Technically, a seed is any program that:
» responds to arbitrary environment variables,
» runs eman defvar to register step variables with eman,

» produces another program, ./eman.command that
does the real job.

The seed is actually run twice:

» At “init": to check validity of input variables and
register them with eman.

» At “prepare”: to produce eman.command.
The user puts all seeds in playground/eman.seeds.
» Eman runs a local copy of the seed in a fresh step dir.
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eman redo

On cluster, jobs can fail nondeterminically.
» Bad luck when scheduled to a swamped machine.
» Bad estimate of hard resource limits (RAM exceeds the
limit = job killed).
Eman to the rescue:

» eman redo step creates a new instance of each failed
step, preserving the experiment structure.

» eman redo step --start starts the steps right away.
To make sure eman will do what you expect, first try:
» eman redo step --dry-run
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eman clone

CLONING is initing a new step using vars of an existing one.
Cloning of individual steps is useful:

» when a step failed (used in eman redo),
» when the seed has changed,

» when we want to redefine some vars:
ORDER=4 eman clone s.Im.1d6f791c...

Cloning of whole tracebacks:
» The text of a traceback gets instantiated as steps.
» Existing steps are reused if OK and with identical vars.
» eman traceback step | eman clone

» eman traceback step | mail bojar@ufal
followed by eman clone < the-received-mail.
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eman tag or eman Is --tag shows tags

TAGS and AUTOTAGS are:
» arbitrary keywords assigned to individual steps,
» inherited from dependencies.

Tags are:
» added using eman add-tag the-tag steps,
» stored in s.stepdir.123/eman.tag.

= Use them to manually mark exceptions.
Autotags are:

» specified in playground/eman.autotags as regexes
over step vars, e.g.. /ORDER=(.*)/$1gr/ for LM,

> (re-)observed at eman retag.
= Use them to systematically mark experiment branches.
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eman collect
Based on rules in eman.results.conf, e.g.:

BLEU */BLEU.opt BLEU\s*=\s*(["\s,]+)
Snts s.eval*/corpus.translation CMD: wc -1

eman collects results from all steps into eman.results:

# Step Name Status Score Value Tags and Autotags
s.evaluator.11ccf590.20120208-1554 DONE TER 31.04 5gr DEVwmt10 LMc-news towards-
s.evaluator.11ccf590.20120208-1554 DONE PER 44.61 5gr DEVwmt10 LMc-news towards-
s.evaluator.11ccf590.20120208-1554 DONE CDER 33.97 5gr DEVwmt10 LMc-news towards-
s.evaluator.11ccf590.20120208-1554 DONE BLEU 12.28 5gr DEVwmt10 LMc-news towards-
s.evaluator.11ccf590.20120208-1554 DONE Snts 3003 5gr DEVwmtl0 LMc-news towards-
s.evaluator.29fab679.20120207-1357 OUTDATED TER 17.66 5gr DEVwmt10 LMc-news

s.evaluator.473687bb.20120214-1509 FAILED Snts 3003

» Perhaps hard to read.
» Easy to grep, sort, whatever, or tabulate.
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eman tabulate to Organize Results

The user specifies in the file eman.tabulate:
» which results to ignore, which to select,
» which tags contribute to col labels, e.g. TER, BLEU,

» which tags contribute to row labels, e.g. [0-9]gr,
towards-[A-Z]+, PRO.

Eman tabulates the results, output in eman.niceresults:
PER CDER TER BLEU

5gr towards-CDER 44.61 33.97 31.04 12.28
5gr 44 .19 33.76 31.02 12.18
5gr PRO 43.91 33.87 31.49 12.09
5gr towards-PER 44.44 33.52 30.74 11.95
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Related Experiment Mgmt Systems

Eman is just one of many, consider also:

» LoonyBin (Clark et al., 2010)

© Clickable Java tool.
¢ Support for multiple clusters and scheduler types.

> Moses EMS (Koehn, 2010)

» Experiment Management System primarily for Moses.
» Centered around a single experiment which consists of steps.

» Pure Makefiles
Yes, you can easily live with fancy Makefiles.
» You will use commands like make init.mert
or cp -r exp.mert.l exp.mert.1b
» You need to learn to use $*, $@ etc.
» You are likely to implement your own eman soon. ®

There are also the following workflow management systems: DAGMan, Pegasus, Dryad.
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