Before we start...

» Start downloading Moses:

wget http://ufal.mff.cuni.cz/“tamchyna/mosesgiza.64bit.tar.gz

» Start downloading our “playground” for SMT:

wget http://ufal.mff.cuni.cz/eman/download/playground.tar

» Slides can be downloaded here:

http://ufal.mff.cuni.cz/"tamchyna/mtmi4.slides.pdf

Experimenting in MT:
Moses Toolkit and Eman

Ondtej Bojar, Ales Tamchyna
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University, Prague

Mon Sept 8, 2014

Outline

Quick overview of Moses.
Bird's eye view of (phrase-based) MT.
» With pointers to Moses repository.
Experiment management.
» Motivation.
» Overview of Eman.
Run your own experiments.
» Introduce Eman’s features through building
a baseline Czech—English MT system.
» Inspect the pipeline and created models.

v

v

v

v

» Try some techniques to improve over the baseline.

43

Moses Toolkit

» Comprehensive open-source toolkit for SMT
» Core: phrase-based and syntactic decoder

43

Moses Toolkit

» Comprehensive open-source toolkit for SMT

» Core: phrase-based and syntactic decoder
» Includes many related tools:
» Data pre-processing:
cleaning, sentence splitting, tokenization, ...
» Building models for translation:
create phrase/rule tables from word-aligned data,
train language models with KenLM
» Tuning translation systems (MERT and others)

43

Moses Toolkit

>

v

v

v

Comprehensive open-source toolkit for SMT

Core: phrase-based and syntactic decoder
Includes many related tools:
» Data pre-processing:
cleaning, sentence splitting, tokenization, ...
» Building models for translation:
create phrase/rule tables from word-aligned data,
train language models with KenLM
» Tuning translation systems (MERT and others)

You still need a tool for word alignment:
» GIZA++, fast_align, ...

Bundled with its own experiment manager EMS
» We will use a different one

43

Bird's Eye View of Phrase-Based MT

[Monolingual] [Parallel] [Devset] [Input]

Bird's Eye View of Phrase-Based MT

[Monolingual] [Parallel] [Devset] [Input]

Preprocessing: tokenization, tagging...

43

Bird's Eye View of Phrase-Based MT

[Monolingual] [Parallel] [Devset] [Input]
I I

Preprocessing: tokenization, tagging...
|

Word alignment

Phrase extraction

Y
Language [Translatlon ‘M. (TM)]

Model (LM)

[Reordering M. (RM)]

Bird's Eye View of Phrase-Based MT

[Monolingual] [Parallel] [Devset] [Input]
I I

Preprocessing: tokenization, tagging...
|

Word alignment

Phrase extraction

Y
Language [Translatlon ‘M. (TM)]

Model (LM)

k[Reordering M. (RM)]

[Basic model]

Bird's Eye View of Phrase-Based MT

[Monolingual] [Parallel] [Devset] [Input]
I I I

Preprocessing: tokenization, tagging...
|

Word alignment

Phrase extraction

Y
Language [Translatlon ‘M. (TM)]

Model (LM)

[Reordering M. (RM)]
y

[Basic model]
S y
Parameter optimization (MERT)

P
[Optimized model]

Bird's Eye View of Phrase-Based MT

[Monolingual] [Parallel] [Devset] [Input]
I I I I

Preprocessing: tokenization, tagging...
|

Word alignment

Phrase extraction

Y
Language [Translatlon ‘M. (TM)]

Model (LM)

[Reordering M. (RM)]
y

[Basic model]
S y
Parameter optimization (MERT)

e
(Optimized model }———{_Transiate)

Bird's Eye View of Phrase-Based MT

[Monolingual] [Parallel] [Devset] [Input]
I I I I

Preprocessing: tokenization, tagging...

Word alignment
Phrase extraction

Language Translation M. (TM)
Model (LM) Reordering M. (RM)

Parameter optimization (MERT)
e \

(Optimized model Translate

moses—parallel.pl

Bird's Eye View of Phrase-Based MT

[Monolingual] [Parallel] [Devset] [Input]
I I I I

Preprocessing: tokenization, tagging...

Word alignment
Phrase extraction

Language Translation M. (TM)
Model (LM) Reordering M. (RM)

moses. ini mniodel

Parameter optimization (MERT)
= “ \

nioses.ini_:é model Translate

moses—parallel.pl

5/43

Now, This Complex World...

[Monolingual] [Parallel] [Devset] [Input]
I I I I

Preprocessing: tokenization, tagging...
|

Word alignment

Phrase extraction

Language [Translatlon ‘M. (TM)]

Model (LM)

[Reordering M. (RM)]
y

[Basic model]
S y
Parameter optimization (MERT)

e
(Optimized model }———{_Transiate)

6/43

..Has to Be Ruled by Someone

[Monolingual] [Parallel] [Devset] [Input]
I I I I

Preproge

Language (N
Model (LM)

Basic model
S

agging...

Parameter optimization (MERT)

pd

[Optimized model

43

..Has to Be Ruled by Someone

[Monolingual] [Parallel] [Devset] [Input]
I I I I

..Has to Be Ruled by Someone

[Monolingual] [Parallel] [Devset] [Input]
I I I I

Parameter op

Duct| 93

Optimized m \

Translate

Why Use an Experiment Manager?

» Automatic tracking of system configurations,
versions of software,. . .
= reproducibility of results

43

Why Use an Experiment Manager?

» Automatic tracking of system configurations,
versions of software,. . .
= reproducibility of results

» Efficiency/convenience

» (MT) experiments are pipelines of complex components
= hide implementation details, provide a unified abstraction
» easily run many experiments in parallel

Why Use an Experiment Manager?

» Automatic tracking of system configurations,
versions of software,. . .
= reproducibility of results

» Efficiency/convenience

» (MT) experiments are pipelines of complex components
= hide implementation details, provide a unified abstraction
» easily run many experiments in parallel
» Re-use of intermediate files

» different experiments may share e.g. the same language
model

Features of Eman

» Console-based = easily scriptable (e.g. in bash).
» Versatile: “seeds” are up to the user, any language.

» Support for the manual search through the space of
experiment configurations.

» Support for finding and marking (“tagging”) steps or
experiments of interest.

» Support for organizing the results in 2D tables.

» Integrated with SGE
= easy to run on common academic clusters.

eman --man will tell you some details.
http://ufal.mff.cuni.cz/eman/ has more.

Eman’s View

» Experiments consist of processing STEPS.
» Steps are:
» of a given type, e.g. align, tm, Im, mert,
» defined by immutable variables, e.g. ALISYM=gdfa,
» all located in one directory, the “playground”,
» timestamped unique directories, e.g.
s.mert.al123.20120215-1632
» self-contained in the dir as much as reasonable.
» dependent on other steps, e.g. first align, then build tm,

then mert.
DONE
. . v
Lifetime of a step: RUNNING
v ~a
seed » INITED » PREPARED FAILED
| S

PREPFAILED

10/43

Why INITED—PREPARED—RUNNING?

The call to eman init seed-
» Should be quick, it is used interactively.
» Should only check and set vars, “turn a blank directory
into a valid eman step”.

The call to eman prepare s.step.123.20120215:
» May check for various input files.

» Less useful with heavy experiments where even corpus
preparation needs cluster.

» Has to produce eman.command.
= A chance to check it: are all file paths correct etc.?

The call to eman start s.step.123.20120215:
» Sends the job to the cluster.

11/43

Our Eman Seeds for MT

[Monolingual] [Parallel] [Devset] [Input]
I I I I

Preprocessing: tokenization, tagging...
|

Word alignment

Phrase extraction

Language [Translatlon ‘M. (TM)]

Model (LM)

[Reordering M. (RM)]
y

[Basic model]
S y
Parameter optimization (MERT)

e
(Optimized model }———{_Transiate)

12 /43

Our Eman Seeds for MT

W align >ent

Parameter optimization (MERT)

(opty mert Sael |

-
& translate

&

2/43

Parameter optimization (MERT)

mm translate

&
-,

2/43

Eman’s Bells and Whistles

Experiment management:
» Is, vars, stat for simple listing,
select for finding steps,

v

v

traceback for full info on experiments,

v

redo failed experiments,
» clone individual steps as well as whole experiments.
Meta-information on steps:

v

status,
» tags, autotags,

v

collecting results,

v

tabulate for putting results into 2D tables.

13 /43

Whole Experiment = eman traceback
eman traceback s.evaluator.8102edfc.20120207-1611

+- s.evaluator.8102edfc.20120207-1611

+- s.mosesgiza.b6073a00.20120202-0037

+- s.translate.bl17£203d.20120207-1604

+- s.mert.272£2£67.20120207-0013

+- s.model.3e28def7.20120207-0013

| +- s5.1m.608df574.20120207-0004

| | +- s.srilm.117f0Ocfe.20120202-0037

| +- s.mosesgiza.b6073a00.20120202-0037

| +- s5.tm.527c9342.20120207-0012

| | +- s.align.dec45f74.20120206-0111

| | | +- s.mosesgiza.b6073a00.20120202-0037
| | +- s.mosesgiza.b6073a00.20120202-0037
+- s.mosesgiza.b6073a00.20120202-0037

Options: --vars --stat --log ... --ignore=steptype

14 /43

Finding Steps: eman select

» Step dirs don't have nice names.
» You need to locate steps of given properties.

What language models do | have?
» eman Is Im
» eman select t Im

If we need just the finished ones:
» eman stat Im | grep DONE
» eman select t Im d

And just 5-gram ones for English:

» eman select t Im d vre ORDER=5 vre
CORPAUG=en

15/43

Deriving Experiments using clone

The text form of traceback allows to tweak the experiment:

» eman tb step | sed 's/cs/de/’ | eman clone
replicates our experiment on German instead of Czech.
The regex substitution is available in eman itself:
» eman tb step -s '/cs/de/’ -s ' /form/Ic/’
shows the traceback with the substitutions highlighted.
» A good chance to check if the derivation does the intended.
» eman tb step -s /cs/de/’ -s */form/Ic/’ \\
| eman clone --dry-run

» Last chance to check if existing steps get reused and what
vars will new steps be based on.

» Drop --dry-run to actually init the new steps.

» Add --start if you're feeling lucky.

16 /43

Hacking Welcome

Eman is designed to be hacking-friendly:
» Self-contained steps are easy to inspect:
all logs are there,
all (or most of) input files are there,
the main code (eman.command) is there,
often, even the binaries are there, or at least clearly
identifiable.

v vV v VY

» Step halfway failed?
= Hack its eman.command and use eman continue.

» Seed not quite fit for your current needs?
= Just init the step and hack eman.seed.
= Or also prepare and hack eman.command.

Always mark manually tweaked steps, e.g. using eman’s tags.

17 /43

Fit for Cell-Phone SSH ©

» Experiments run long but fail often.
» You don’t want to be chained to a computer.

Most eman commands have a short nickname.

» How are my last 10 merts?
eman sel t mert | 10 --stat

Specify steps using any part of their name/hash or result:

» s.foobar.a0f3b123.20120215-1011 failed, retry it:
eman redo a0f3 --start

» How did | achieve this great BLEU score of 25.107
eman tb 25.10 --vars | less

18 /43

Fit for Team Work

Playgrounds can be effectively merged:
eman add-remote /home/fred/playground freds-exps

v

» You can re-interpret Fred's results.

v

You can clone Fred's experiments.
You can make your steps depend on Fred’s steps.
» Only a shared file system is needed.

v

Caveat: we don't bother checking for conflicts yet.

19/43

Getting Started

“Install” eman in your home directory:
git clone https://redmine.ms.mff.cuni.cz/eman.git
Make sure eman is in your PATH: Bad things happen if not.

export PATH=$HOME/eman/bin/:$PATH
echo "export PATH=$HOME/eman/bin/:\$PATH" >> ~/.bashrc

Get our SMT Playground (with all the seeds):

git clone \
https://redmine.ms.mff.cuni.cz/ufal-smt-playground.git

20 /43

Fix Perl Dependencies
Set up a local Perl repository.

wget -0- http://cpanmin.us \

| perl - -1 /perlb5 App::cpanminus local::1lib

eval ‘perl -I /perl5/lib/perl5 -Mlocal::lib¢

echo ’eval ‘perl -I /perl5/lib/perld -Mlocal::lib‘’ >> /.bashrc

You can copy the answer from:
http://stackoverflow.com/a/2980715
(just replace .profile with .bashrc)

Install the required packages:
cpanm YAML: :XS

Confirm that eman runs:

eman —-man

21/43

http://stackoverflow.com/a/2980715

Setup Corpora

» Czech—English translation

» Training data: roughly 0.1% of CzEng 1.0
(15k sentence pairs)

» Dev set: 10% of WMT 2012 (300 sentence pairs)
» Test set: 10% WMT 2013 (300 sentence pairs)

Download the data:
http://bit.ly/mtml3corpora
Extract it into a subdirectory your playground, e.g.:

mkdir ~/ufal-smt-playground/playground/corpora

22 /43

Importing the Corpora

>

>

Every corpus has to “enter the world of eman”.
This can be done using the seed corpus.

“eman init corpus” requires the following variables:

>

v

v

v

v

TAKE_FROM_COMMAND command which produces the
corpus

OUTCORP corpus name
OUTLANG corpus language
QUTFACTS description of factors

QUTLINECQUNT number of lines that we are expecting
to get, used as a sanity check

Importing the Corpora

E.g. for training data, the Czech side:

TAKE FROM COMMAND="cat ../corpora/train.cs" \
OUTLINECOUNT=15000 \

OUTCORP=train OUTLANG=cs \
OUTFACTS=1lc+lemma+tag \

eman init --start corpus

%\ Inspect the step directory. Where is the corpus stored?
Create a bash script/ “one-liner” to import all corpora:
train/dev/test, cs/en (loop over sections and languages).

Did it work? Find out:

eman ls —--stat

Frequent mistake: wrong OUTLINECOUNT for dev and test.

Listing and Printing Corpora

Corpman links symbolic names with corpus steps:
./corpman ls # show all registered corpora

Corpman ensures uniform pre-processing:

./corpman train/cs+lemma --dump
(Construct and) print the corpus as lemmas.

N\ Bonus: Calculate the OOV (out-of-vocabulary) rate of
the test data given the training data for:

» English vs. Czech and lowercase forms vs. lemmas

Use ufal-smt-playground/scripts/count-oov.pl or
oov.pl from Moses. (Or write your own.)

Compiling Moses

In eman’s philosophy, software is just data.
» Binaries should be compiled in timestamped step dirs.
» ...so we know the exact code that was used.

Compile Moses and GIZA++:

eman init --start mosesgiza

%\ Examine the step dir. Where is the compilation log?

Bonus (hard): Make another mosesgiza step where
Moses prints “O0OV" every time it encounters an
out-of-vocabulary word.

Getting Moses binaries

v

In your playground, download the binary:

wget http://ufal.mff.cuni.cz/“tamchyna/mosesgiza.64bit.tar.gz

v

Extract it:
tar xzf mosesgiza.64bit.tar.gz

Some hacking:

v

./fix-symlinks.sh
Let eman know what we did:

v

eman reindex

Baseline Experiment
In your playground:

wget http://ufal.mff.cuni.cz/ tamchyna/baseline.traceback
eman clone --start < baseline.traceback

%\ While the experiment runs:

» Make a copy of the traceback

» Modify it to train word alignment on lemmas instead
of Ic. (But preserve the translation lc—Ic!)

» Note that ALILABEL is somewhat arbitrary but has to match
between align and tm.

%\ Bonus: do the required edits using substitution in eman.
Hint: eman --man, look for the “traceback” command.

28 /43

Looking Inside the Models

» Go to one of your baseline model steps, look at files:
» Language model: 1m.1.corpus.lm.gz
%\ What is more probable: “united kingdom™ or “united states”?

Looking Inside the Models

» Go to one of your baseline model steps, look at files:
» Language model: 1m.1.corpus.lm.gz

%\ What is more probable: “united kingdom™ or “united states”?
%\ Why are longer n-grams more probable than short ones?

29 /43

Looking Inside the Models

» Go to one of your baseline model steps, look at files:

» Language model: 1m.1.corpus.lm.gz
%\ What is more probable: “united kingdom™ or “united states”?
%\ Why are longer n-grams more probable than short ones?

» Phrase table: tm.1/model/phrase-table.0-0.gz
%\ How do you say “hi" in Czech?

29 /43

Looking Inside the Models

» Go to one of your baseline model steps, look at files:

» Language model: 1m.1.corpus.lm.gz
%\ What is more probable: “united kingdom™ or “united states”?
%\ Why are longer n-grams more probable than short ones?

» Phrase table: tm.1/model/phrase-table.0-0.gz
%\ How do you say “hi" in Czech?
N\ Phrase scores are P(f|e), lex(f|e), P(e|f), lex(e|f).

Given that, what do the counts in the last column mean?

(Let's look e.g. at the phrase “ahoj ||| hi".)

29 /43

Tuning

N\ How many iterations did MERT take?

30/43

Tuning

N\ How many iterations did MERT take?
%\ How did the BLEU score on the devset change?

30/43

Tuning

N\ How many iterations did MERT take?
How did the BLEU score on the devset change?
How much disk space did your MERTs need?

30/43

Tuning

N\ How many iterations did MERT take?
How did the BLEU score on the devset change?
How much disk space did your MERTs need?

» Standard Unix tool:
eman du -sh s.mert.*

» Eman status:
eman eman 1s mert —--dus —--stat

30/43

Results

Let's compare MT quality (BLEU) of 2 systems:
» alignment on lowercase forms
» alignment on lemmas
%\ Look at evaluator steps. Which one is the baseline?

31/43

Results

Let's compare MT quality (BLEU) of 2 systems:
» alignment on lowercase forms
» alignment on lemmas
%\ Look at evaluator steps. Which one is the baseline?

» Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

31/43

Results

Let's compare MT quality (BLEU) of 2 systems:
» alignment on lowercase forms
» alignment on lemmas
%\ Look at evaluator steps. Which one is the baseline?

» Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

» Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*1c’)

31/43

Results

Let's compare MT quality (BLEU) of 2 systems:
» alignment on lowercase forms
» alignment on lemmas
%\ Look at evaluator steps. Which one is the baseline?

» Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

» Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*1c’)

» Or just one select query:
eman sel t evaluator br t align vre ’SRC.x*1lc’

31/43

Results

Let's compare MT quality (BLEU) of 2 systems:
» alignment on lowercase forms
» alignment on lemmas
%\ Look at evaluator steps. Which one is the baseline?

» Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

» Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*1c’)

» Or just one select query:
eman sel t evaluator br t align vre ’SRC.x*1lc’

BLEU is in the “s.evaluator.../scores” file.

31/43

Wild Experimenting

%\ Run word alignment on 1cstem4, 1cstemb.

32/43

Wild Experimenting

%\ Run word alignment on 1cstem4, 1cstemb.
B Try different orders of the language model (3, 4, 6).

32/43

Wild Experimenting

%\ Run word alignment on 1cstem4, 1cstemb.
A Try different orders of the language model (3, 4, 6).
N\ Translate from Czech lemmas into English forms (1c).

32/43

Wild Experimenting

%\ Run word alignment on 1cstem4, 1cstemb.

A Try different orders of the language model (3, 4, 6).
N\ Translate from Czech lemmas into English forms (1c).
%\ Try the opposite translation direction: English— Czech.

32/43

Wild Experimenting

%\ Run word alignment on 1cstem4, 1cstemb.

A Try different orders of the language model (3, 4, 6).
N\ Translate from Czech lemmas into English forms (1c).
%\ Try the opposite translation direction: English— Czech.

%\ Set up a factored system:
» lc—lc (baseline path), and
» lemma—lc (alternative path).

32/43

Summary

Hopefully, you now understand:

» within (PB)MT:

» the structure of a (PB)MT experiment,

» what is the language model and the translation model,
» meta-level:

» eman'’s organization of the experimentation playground,
» the idea of cloning of experiments.

33/43

Extra Slides

34 /43

Eman is Versatile

What types of steps should | have?
» Any, depending on your application.
What language do | write steps in?
» Any, e.g. bash.
What are the input and output files of the steps?
» Any, just make depending steps understand each other.

» Steps can have many output files and serve as
prerequisites to different types of other steps.

What are measured values of my experiments?
» Anything from any of the files any step produces.

35/43

What the User Implements: Just Seeds

Technically, a seed is any program that:
» responds to arbitrary environment variables,
» runs eman defvar to register step variables with eman,

» produces another program, ./eman.command that
does the real job.

The seed is actually run twice:

» At “init": to check validity of input variables and
register them with eman.

» At “prepare”: to produce eman.command.
The user puts all seeds in playground/eman.seeds.
» Eman runs a local copy of the seed in a fresh step dir.

36 /43

eman redo

On cluster, jobs can fail nondeterminically.
» Bad luck when scheduled to a swamped machine.
» Bad estimate of hard resource limits (RAM exceeds the
limit = job killed).
Eman to the rescue:

» eman redo step creates a new instance of each failed
step, preserving the experiment structure.

» eman redo step --start starts the steps right away.
To make sure eman will do what you expect, first try:
» eman redo step --dry-run

37/43

eman clone

CLONING is initing a new step using vars of an existing one.
Cloning of individual steps is useful:

» when a step failed (used in eman redo),
» when the seed has changed,

» when we want to redefine some vars:
ORDER=4 eman clone s.Im.1d6f791c...

Cloning of whole tracebacks:
» The text of a traceback gets instantiated as steps.
» Existing steps are reused if OK and with identical vars.
» eman traceback step | eman clone

» eman traceback step | mail bojar@ufal
followed by eman clone < the-received-mail.

38/43

eman tag or eman Is --tag shows tags

TAGS and AUTOTAGS are:
» arbitrary keywords assigned to individual steps,
» inherited from dependencies.

Tags are:
» added using eman add-tag the-tag steps,
» stored in s.stepdir.123/eman.tag.

= Use them to manually mark exceptions.
Autotags are:

» specified in playground/eman.autotags as regexes
over step vars, e.g.. /ORDER=(.*)/$1gr/ for LM,

> (re-)observed at eman retag.
= Use them to systematically mark experiment branches.

39/43

eman collect
Based on rules in eman.results.conf, e.g.:

BLEU */BLEU.opt BLEU\s*=\s*(["\s,]+)
Snts s.eval*/corpus.translation CMD: wc -1

eman collects results from all steps into eman.results:

Step Name Status Score Value Tags and Autotags
s.evaluator.11ccf590.20120208-1554 DONE TER 31.04 5gr DEVwmt10 LMc-news towards-
s.evaluator.11ccf590.20120208-1554 DONE PER 44.61 5gr DEVwmt10 LMc-news towards-
s.evaluator.11ccf590.20120208-1554 DONE CDER 33.97 5gr DEVwmt10 LMc-news towards-
s.evaluator.11ccf590.20120208-1554 DONE BLEU 12.28 5gr DEVwmt10 LMc-news towards-
s.evaluator.11ccf590.20120208-1554 DONE Snts 3003 5gr DEVwmtl0 LMc-news towards-
s.evaluator.29fab679.20120207-1357 OUTDATED TER 17.66 5gr DEVwmt10 LMc-news

s.evaluator.473687bb.20120214-1509 FAILED Snts 3003

» Perhaps hard to read.
» Easy to grep, sort, whatever, or tabulate.

40 /43

eman tabulate to Organize Results

The user specifies in the file eman.tabulate:
» which results to ignore, which to select,
» which tags contribute to col labels, e.g. TER, BLEU,

» which tags contribute to row labels, e.g. [0-9]gr,
towards-[A-Z]+, PRO.

Eman tabulates the results, output in eman.niceresults:
PER CDER TER BLEU

5gr towards-CDER 44.61 33.97 31.04 12.28
5gr 44 .19 33.76 31.02 12.18
5gr PRO 43.91 33.87 31.49 12.09
5gr towards-PER 44.44 33.52 30.74 11.95

41/43

Related Experiment Mgmt Systems

Eman is just one of many, consider also:

» LoonyBin (Clark et al., 2010)

© Clickable Java tool.
¢ Support for multiple clusters and scheduler types.

> Moses EMS (Koehn, 2010)

» Experiment Management System primarily for Moses.
» Centered around a single experiment which consists of steps.

» Pure Makefiles
Yes, you can easily live with fancy Makefiles.
» You will use commands like make init.mert
or cp -r exp.mert.l exp.mert.1b
» You need to learn to use $*, $@ etc.
» You are likely to implement your own eman soon. ®

There are also the following workflow management systems: DAGMan, Pegasus, Dryad.

42 /43

References

Jonathan H. Clark, Jonathan Weese, Byung Gyu Ahn, Andreas Zollmann, Qin Gao, Kenneth
Heafield, and Alon Lavie. 2010. The Machine Translation Toolpack for LoonyBin: Automated
Management of Experimental Machine Translation HyperWorkflows. Prague Bulletin of
Mathematical Linguistics, 93:117-126.

Philipp Koehn. 2010. An Experimental Management System. Prague Bulletin of Mathematical
Linguistics, 94:87-96, September.

43 /43

