## Domain Adaptation in Machine Translation

#### Marine Carpuat National Research Council Canada

Marine.Carpuat@nrc.gc.ca

#### Old Domain (Parliament)

| Original   | monsieur le président, les pêcheurs de homard de la région de l'atlantique sont dans une situation catastrophique. |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Reference  | mr. speaker, lobster fishers in atlantic canada are facing a disaster.                                             |  |  |  |  |  |  |
| System     | mr. speaker, the lobster fishers in atlantic canada are in a mess.                                                 |  |  |  |  |  |  |
| New Domain |                                                                                                                    |  |  |  |  |  |  |
| Original   | comprimés pelliculés blancs pour voie orale.                                                                       |  |  |  |  |  |  |
| Reference  | white film-coated tablets for oral use.                                                                            |  |  |  |  |  |  |
| System     | white pelliculés tablets to oral.                                                                                  |  |  |  |  |  |  |
| New Domain |                                                                                                                    |  |  |  |  |  |  |
| Original   | mode et voie(s) d'administration                                                                                   |  |  |  |  |  |  |
| Reference  | method and route(s) of administration                                                                              |  |  |  |  |  |  |
| System     | fashion and voie(s) of directors                                                                                   |  |  |  |  |  |  |

#### Domain adaptation in MT

Translating across domains is hard, but often necessary

- Lots of interest in domain adaptation driven by
  - Increasing amounts of parallel training data
  - Increasing diversity of data sources

#### What is a domain?

- No clear definition of domain
   Related to topic, genre, register
- Defined in practice by datasets/tasks
  - Single homogeneous domain e.g. Parliament proceedings
  - Large old domain & small new domain e.g. Parliament + News or Science
  - Large data collection from various sources e.g. NIST OpenMT, DARPA BOLT, WMT gigafren ...

#### What is domain adaptation?

#### From classical "single-domain" learning...

• predict  $x \to y$ 

- training and test data generated from the same distribution  $(x,y) \sim \Pr[x,y]$ 

#### ... to Domain Adaptation

• Port system trained on old (aka source) domain to new (aka target) domain  $(x, y) \sim \Pr_S[x, y]$   $(x, y) \sim \Pr_T[x, y]$ 

### No "one size fits all" approach

- Lots of domain adaptation work in Machine Learning
  - see [Blitzer & Daumé III, ICML 2010] for an overview

- But not directly applicable to MT
  - heterogeneous components trained independently
  - large variety of settings

## Addressing domain shift in MT

- General approach
  - adjust MT parameters to optimize performance for a test set, based on some knowledge of its domain
- Various settings
  - amount of in-domain training data: small, dev-sized, none (just source text)
  - nature of out-of-domain data: size, diversity, labeling
  - monolingual resources: source and target, in-domain or not, comparable or not
  - latency: offline, tuning, dynamic, online, (interactive)

## What to adapt?



- Language model (LM)
  - Effective and simple
  - Previous work from speech
  - Perplexity-based interpolation popular
- Translation model (TM)
  - Most popular target
  - Gains can be elusive
- Distortion/Reordering model (DM)
- Log-linear model
  - limited scope if in-domain dev set available

## How to adapt to a new domain?

- Filter training data
  - Select from out-of-domain data based on similarity to test domain
- Corpus weighting
  - At sub-corpora, sentence or phrase-pair level
- Model combination
  - Train submodels on different subcorpora
- Self training
  - Use MT to generate new parallel data
- Latent semantics
  - Exploit latent topic structure
- Mining comparable corpora

#### Domain adaptation in MT

- Lots of recent work, but still many open questions
- I'll focus on 2 of them today
  - What goes wrong when porting a MT system to a new domain?
  - What does "domain adaptation" mean in more heterogeneous data settings?

## I. WHAT GOES WRONG WHEN PORTING MT TO A NEW DOMAIN?

When porting a machine translation system to a new domain...

#### 1. what goes wrong?

#### analysis of lexical choice errors

[Irvine, Morgan, Carpuat, Daumé III, Munteanu, TACL 2013]

#### 2. how can we fix common errors?

new task to address under-studied "sense" errors

[Carpuat, Daumé III, Henry, Irvine, Jagarlamudi, Rudinger, ACL 2013]

#### S<sup>4</sup> Taxonomy of Adaptation Errors

**New Domain (Medical)** 

| Original | mode et voie(s) d' administration |
|----------|-----------------------------------|
|----------|-----------------------------------|

**Reference** method and route(s) of administration

System fashion and voie(s) of directors

- **Seen:** Never seen this word before "voie(s)"
- Sense Never seen this word used in this way "mode"  $\rightarrow$  "method"
- Score Wrong output is scored higher "administration" → "administration" or "directors"?
- Search Decoding/Search erred

## Measuring impact of S4 errors

- We port MT system to new domain
  - Assumption: no new domain training data
  - Old domain resources
    - Large parallel training set
  - New domain resources
    - Tuning + test set



**Medical** 

F

## Measuring impact of S4 errors

- Compare translation quality with "oracle"
  - Trained on
    - large old domain corpus
    - large new domain corpus
  - new domain tuning set





#### Measuring SEEN effects



#### Measuring SENSE effects



#### Measuring SCORE effects



#### Impact of fixing S<sup>4</sup> errors on BLEU





OLD +Seen +Sense +Score Mixed OLD +Seen +Sense +Score Mixed

How to fix the S<sup>4</sup> errors (without new domain parallel data)

#### **Seen:** Dictionary mining for unseen terms [Fung & Yee 1998, Haghighi et al. 2008, Daumé III & Jagarlamudi 2011, inter alia]

## **Score:** Existing domain adaptation techniques

[Blitzer et al. 2006, Bickel et al. 2007, inter alia]

Sense: SenseSpotting + {dictionary mining, active learning} [Bloodgood & CCB 2010]

## SenseSpotting

• Why? MT performance across domains degrades due to lexical choice errors

• What? New task to identify word occurrences (tokens) that gain a new sense in new domains

 How? Automatic annotation from parallel text + supervised learning

#### SenseSpotting task definition

Old domain translation lexicon rapport ||| report ||| 0.8 rapport ||| connection ||| 0.1 rapport ||| study ||| 0.05 rapport ||| relationship ||| 0.05

New domain sentences

 ces données sont basées sur le rapport d' étude clinique

this data is based on clinical study report (-)

 le rapport cholestérol total / hdlc est resté stable the ratio (+) of total cholesterol : hdlc was unchanged

### Key aspects of SenseSpotting

• Sense inventory is defined by the MT lexicon [Chan et al. 2007, Carpuat & Wu, 2007, inter alia]

 New Senses are detected at the tokenlevel



Extract candidate terms and statistics Extract useful statistics Train model parameters

#### Classification set-up

Logistic regression model trained with VW

• L1 or L2 regularized based on tuning data

16-fold cross validation at the type level

- Never test on type seen in training!
- E.g., train on "mode", "administration"; test on "rapport"

#### Evaluation metric: AUC

- area under the ROC curve
- Pr(a true positive outranks a true negative)

#### Indicators of new sense

New senses alter corpus-level word frequency New senses alter document-level context

- topic distribution
- New senses alter local context
  - n-gram language model
  - distributional similarity
  - context-dependent translation model

#### Computed at both type and token levels

#### SenseSpotting results



#### Part I: Summary

We used **automatic annotation** derived from parallel corpora to address key questions

- what goes wrong when translating across domains?
  - All errors categories (seen, sense, score) matter
- how can we fix common errors?
  - proposed new task to address under-studied "sense" errors

#### II. WHAT DOES "DOMAIN ADAPTATION" MEAN IN MORE HETEROGENEOUS DATA SETTINGS?

How to estimate MT models from heterogeneous data?

- So far we have studied clear cut domain adaptation tasks (Europarl -> Medical)
- But we often train on more heterogeneous data
- How to robustly estimate models
  - from heterogeneous data
  - to achieve good translation quality on various test domains?

Estimating MT Models From Heterogeneous Data

Approaches

. . .

Data selection

[Moore & Lewis 2010, Axelrod et al. 2011...]

- Data weighting based on provenance [Chiang et al. 2011, Eidelman et al. 2012,...]

Linear mixture models

[Foster & Kuhn 2007, Foster et al. 2010, Sennrich 2012, ...]

– Finer grained instance weighting [Foster et al. 2010, Hasler et al. 2014...] Defining Linear Mixtures With Heterogeneous Data

- We focus on translation probabilities
- Given K subsets of the training corpus

$$P(t|s) = \sum_{k=1}^{K} \lambda_k P_k(t|s)$$

- How to define mixture components?
- How to learn mixture weights?

## Mixture Models for Robust MT

- We empirically study impact on BLEU of – Component definitions
  - Mixture weights
- Key findings
  - All mixture models improve BLEU
  - Surprisingly, domain knowledge is not necessary

# How to set mixing weights? $P(t|s) = \sum_{k=1}^{K} \lambda_k P_k(t|s)$

2 methods:

- Maximum likelihood weights
  - Requires dev data representative of test domain
  - Estimate joint distribution  $ilde{p}(s,t)$  from dev
  - Optimize ML objective using EM

$$\hat{\lambda} = \operatorname{argmax}_{\lambda} \sum_{s,t} \tilde{p}(s,t) \log \sum_{k=1}^{K} \lambda_k p_k(s|t)$$

# How to set mixing weights? $P(t|s) = \sum_{k=1}^{K} \lambda_k P_k(t|s)$

- 2 methods:
- Maximum likelihood weights
  - Requires dev data representative of test domain
- Uniform weights
  - Domain agnostic

How to define mixture  
components?  
$$P(t|s) = \sum_{k=1}^{K} \lambda_k P_k(t|s)$$

We partition training data

- By hand, using domain knowledge
- By automatic clustering, to learn data-driven domain distinctions
- Randomly
  - Random partition
  - Random sample (with replacement)

## Domain knowledge in linear mixture models

| Corpus<br>Components | Max<br>Likelihood<br>Weights | Uniform<br>Weights |  |
|----------------------|------------------------------|--------------------|--|
| Manual partition     | Dev + Train                  | Train              |  |
| Automatic partition  | Dev                          | None               |  |
| Random partition     | Dev                          | None               |  |
| Random sample        | Dev                          | None               |  |

## Experiments: 2 lang. pairs & 2 test domains

| Arabic-English Training Conditions |      |      | Chinese-English Training Conditions |             |         |         |      |
|------------------------------------|------|------|-------------------------------------|-------------|---------|---------|------|
|                                    | segs | src  | en                                  |             | segs    | src     | en   |
| train                              | 8.5M | 262M | 207M                                | train       | 11M     | 234M    | 253M |
| Test Domain 1: Webforum            |      |      |                                     | Test Do     | main 1: | Webforu | ım   |
|                                    | segs | src  | en                                  |             | segs    | src     | en   |
| dev (tune)                         | 4.1k | 66k  | 72k                                 | dev (tune)  | 2.7k    | 61k     | 77k  |
| web1 (eval)                        | 2.2k | 35k  | 38k                                 | web1 (eval) | 1.4k    | 31k     | 38k  |
| web2 (eval)                        | 2.4k | 37k  | 40k                                 | web2 (eval) | 1.2k    | 29k     | 36k  |
| Test Domain 2: News                |      |      | Test I                              | Domain      | 2: News |         |      |
|                                    | segs | src  | en                                  |             | segs    | src     | en   |
| dev (tune)                         | 1664 | 54k  | 51k                                 | dev (tune)  | 1.7k    | 39k     | 24k  |
| news (eval)                        | 813  | 32k  | 29k                                 | news (eval) | 0.7k    | 19k     | 19k  |

# Experiments: defining mixture components



- Split training set into homogeneous components
  - Same provenance, epoch, dialect, genre
- Arabic
  - 47 files, 15 genres, 4 dialects
  - $\Rightarrow$  82 basic components
  - ⇒ grouped into K = 10 components
- Chinese

 $\Rightarrow$  101 basic components  $\Rightarrow$  arouped into K = 17

## Experiments: Phrase-based MT system

- Features
  - 4 phrase-table scores
    - Kneser-Ney smoothed translation probabilities x 2 [Chen et al. 2011]
    - Lexical weights x 2 [Zens & Ney 2004]
    - Counts summed across several word alignments (IBM2, HMM, IBM4)
  - hierarchical reordering, word penalty, distortion penalty [Galley & Manning 2008, Cherry 2013]
  - 3 5-gram language models
    - All training set, Gigaword, webforum or news only
  - Sparse features [Hopkins & May, 2011]
- Loglinear weights learned with batch lattice MIRA

# Findings: linear mixtures significantly improve BLEU



Arabic-English

Chinese-English

#### ar-en: all mixture components improve BLEU



Explicitly modeling domain in mixture components does not help !

# ar-en: mixing weights only have a small impact on BLEU



domain knowledge in mixing weights does not clearly help

#### zh-en: no consistent advantage from domain knowledge



Why doesn't domain knowledge help more?

- Hypothesis: mixture models
  - don't capture domain specific translations
  - smooth translation distributions toward "general language" instead
  - learn more robust translation probabilities
    - Random sampling + averaging = bagging [Breiman 94]

Part II: Domain Adaptation in heterogeneous data settings

When learning mixture models from heterogeneous data

- should mixture components represent domains?
- should weights reflect proximity between components and test domain?

Part II: Domain Adaptation in heterogeneous data settings

#### Findings

- All mixtures improve BLEU
- Domain knowledge is not necessary
- Are mixture models just a form of smoothing toward "general language"?

#### Conclusion

- There's no data like more relevant data
  Handling data heterogeneity matters
- Lots of "domain adaptation" results in the literature, but no clear picture yet
  - various data settings, targets for adaptation, approaches
- Key open questions remain
  - How exactly does translation quality degrade in new domains?
  - What domain knowledge do domain adaptation techniques actually capture?

## Domain Adaptation in Machine Translation

#### Marine Carpuat National Research Council Canada

Marine.Carpuat@nrc.gc.ca