
Chapter 4

Word-based models

Statistical Machine Translation

Lexical Translation

• How to translate a word → look up in dictionary

Haus — house, building, home, household, shell.

• Multiple translations

– some more frequent than others
– for instance: house, and building most common
– special cases: Haus of a snail is its shell

• Note: In all lectures, we translate from a foreign language into English

Chapter 4: Word-Based Models 1

Collect Statistics

Look at a parallel corpus (German text along with English translation)

Translation of Haus Count
house 8,000
building 1,600
home 200
household 150
shell 50

Chapter 4: Word-Based Models 2

Estimate Translation Probabilities

Maximum likelihood estimation

pf(e) =

0.8 if e = house,

0.16 if e = building,

0.02 if e = home,

0.015 if e = household,

0.005 if e = shell.

Chapter 4: Word-Based Models 3

Alignment

• In a parallel text (or when we translate), we align words in one language with
the words in the other

das Haus ist klein

the house is small

1 2 3 4

1 2 3 4

• Word positions are numbered 1–4

Chapter 4: Word-Based Models 4

Alignment Function

• Formalizing alignment with an alignment function

• Mapping an English target word at position i to a German source word at
position j with a function a : i→ j

• Example
a : {1→ 1, 2→ 2, 3→ 3, 4→ 4}

Chapter 4: Word-Based Models 5

Reordering

Words may be reordered during translation

das Hausistklein

the house is small
1 2 3 4

1 2 3 4

a : {1→ 3, 2→ 4, 3→ 2, 4→ 1}

Chapter 4: Word-Based Models 6

One-to-Many Translation

A source word may translate into multiple target words

das Haus ist klitzeklein

the house is very small
1 2 3 4

1 2 3 4

5

a : {1→ 1, 2→ 2, 3→ 3, 4→ 4, 5→ 4}

Chapter 4: Word-Based Models 7

Dropping Words

Words may be dropped when translated
(German article das is dropped)

das Haus ist klein

house is small
1 2 3

1 2 3 4

a : {1→ 2, 2→ 3, 3→ 4}

Chapter 4: Word-Based Models 8

Inserting Words

• Words may be added during translation

– The English just does not have an equivalent in German
– We still need to map it to something: special null token

das Haus ist klein

the house is just small

NULL

1 2 3 4

1 2 3 4

5

0

a : {1→ 1, 2→ 2, 3→ 3, 4→ 0, 5→ 4}

Chapter 4: Word-Based Models 9

IBM Model 1

• Generative model: break up translation process into smaller steps

– IBM Model 1 only uses lexical translation

• Translation probability

– for a foreign sentence f = (f1, ..., flf) of length lf
– to an English sentence e = (e1, ..., ele) of length le
– with an alignment of each English word ej to a foreign word fi according to

the alignment function a : j → i

p(e, a|f) =
ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

– parameter ε is a normalization constant

Chapter 4: Word-Based Models 10

Example

das Haus ist klein
e t(e|f)
the 0.7
that 0.15
which 0.075
who 0.05
this 0.025

e t(e|f)
house 0.8
building 0.16
home 0.02
household 0.015
shell 0.005

e t(e|f)
is 0.8
’s 0.16
exists 0.02
has 0.015
are 0.005

e t(e|f)
small 0.4
little 0.4
short 0.1
minor 0.06
petty 0.04

p(e, a|f) =
ε

43
× t(the|das)× t(house|Haus)× t(is|ist)× t(small|klein)

=
ε

43
× 0.7× 0.8× 0.8× 0.4

= 0.0028ε

Chapter 4: Word-Based Models 11

Learning Lexical Translation Models

• We would like to estimate the lexical translation probabilities t(e|f) from a
parallel corpus

• ... but we do not have the alignments

• Chicken and egg problem

– if we had the alignments,
→ we could estimate the parameters of our generative model

– if we had the parameters,
→ we could estimate the alignments

Chapter 4: Word-Based Models 12

EM Algorithm

• Incomplete data

– if we had complete data, would could estimate model
– if we had model, we could fill in the gaps in the data

• Expectation Maximization (EM) in a nutshell

1. initialize model parameters (e.g. uniform)
2. assign probabilities to the missing data
3. estimate model parameters from completed data
4. iterate steps 2–3 until convergence

Chapter 4: Word-Based Models 13

EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• Initial step: all alignments equally likely

• Model learns that, e.g., la is often aligned with the

Chapter 4: Word-Based Models 14

EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• After one iteration

• Alignments, e.g., between la and the are more likely

Chapter 4: Word-Based Models 15

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• After another iteration

• It becomes apparent that alignments, e.g., between fleur and flower are more
likely (pigeon hole principle)

Chapter 4: Word-Based Models 16

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• Convergence

• Inherent hidden structure revealed by EM

Chapter 4: Word-Based Models 17

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

p(la|the) = 0.453
p(le|the) = 0.334

p(maison|house) = 0.876
p(bleu|blue) = 0.563

...

• Parameter estimation from the aligned corpus

Chapter 4: Word-Based Models 18

IBM Model 1 and EM

• EM Algorithm consists of two steps

• Expectation-Step: Apply model to the data

– parts of the model are hidden (here: alignments)
– using the model, assign probabilities to possible values

• Maximization-Step: Estimate model from data

– take assign values as fact
– collect counts (weighted by probabilities)
– estimate model from counts

• Iterate these steps until convergence

Chapter 4: Word-Based Models 19

IBM Model 1 and EM

• We need to be able to compute:

– Expectation-Step: probability of alignments

– Maximization-Step: count collection

Chapter 4: Word-Based Models 20

IBM Model 1 and EM

• Probabilities
p(the|la) = 0.7 p(house|la) = 0.05

p(the|maison) = 0.1 p(house|maison) = 0.8

• Alignments

la •
maison•

the•
house•

la •
maison•

the•
house•

@
@
@

la •
maison•

the•
house•,

,
, la •

maison•
the•
house•

@
@
@,

,
,

p(e, a|f) = 0.56 p(e, a|f) = 0.035 p(e, a|f) = 0.08 p(e, a|f) = 0.005

p(a|e, f) = 0.824 p(a|e, f) = 0.052 p(a|e, f) = 0.118 p(a|e, f) = 0.007

• Counts
c(the|la) = 0.824 + 0.052 c(house|la) = 0.052 + 0.007

c(the|maison) = 0.118 + 0.007 c(house|maison) = 0.824 + 0.118

Chapter 4: Word-Based Models 21

IBM Model 1 and EM: Expectation Step

• We need to compute p(a|e, f)

• Applying the chain rule:

p(a|e, f) =
p(e, a|f)
p(e|f)

• We already have the formula for p(e, a|f) (definition of Model 1)

Chapter 4: Word-Based Models 22

IBM Model 1 and EM: Expectation Step

• We need to compute p(e|f)

p(e|f) =
∑
a

p(e, a|f)

=

lf∑
a(1)=0

...

lf∑
a(le)=0

p(e, a|f)

=

lf∑
a(1)=0

...

lf∑
a(le)=0

ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

Chapter 4: Word-Based Models 23

IBM Model 1 and EM: Expectation Step

p(e|f) =

lf∑
a(1)=0

...

lf∑
a(le)=0

ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

=
ε

(lf + 1)
le

lf∑
a(1)=0

...

lf∑
a(le)=0

le∏
j=1

t(ej|fa(j))

=
ε

(lf + 1)
le

le∏
j=1

lf∑
i=0

t(ej|fi)

• Note the trick in the last line

– removes the need for an exponential number of products
→ this makes IBM Model 1 estimation tractable

Chapter 4: Word-Based Models 24

The Trick
(case le = lf = 2)

2∑
a(1)=0

2∑
a(2)=0

=
ε

32

2∏
j=1

t(ej|fa(j)) =

= t(e1|f0) t(e2|f0) + t(e1|f0) t(e2|f1) + t(e1|f0) t(e2|f2)+
+ t(e1|f1) t(e2|f0) + t(e1|f1) t(e2|f1) + t(e1|f1) t(e2|f2)+
+ t(e1|f2) t(e2|f0) + t(e1|f2) t(e2|f1) + t(e1|f2) t(e2|f2) =

= t(e1|f0) (t(e2|f0) + t(e2|f1) + t(e2|f2)) +

+ t(e1|f1) (t(e2|f1) + t(e2|f1) + t(e2|f2)) +

+ t(e1|f2) (t(e2|f2) + t(e2|f1) + t(e2|f2)) =

= (t(e1|f0) + t(e1|f1) + t(e1|f2)) (t(e2|f2) + t(e2|f1) + t(e2|f2))

Chapter 4: Word-Based Models 25

IBM Model 1 and EM: Expectation Step

• Combine what we have:

p(a|e, f) = p(e, a|f)/p(e|f)

=

ε
(lf+1)le

∏le
j=1 t(ej|fa(j))

ε
(lf+1)le

∏le
j=1

∑lf
i=0 t(ej|fi)

=

le∏
j=1

t(ej|fa(j))∑lf
i=0 t(ej|fi)

Chapter 4: Word-Based Models 26

IBM Model 1 and EM: Maximization Step

• Now we have to collect counts

• Evidence from a sentence pair e,f that word e is a translation of word f :

c(e|f ; e, f) =
∑
a

p(a|e, f)
le∑
j=1

δ(e, ej)δ(f, fa(j))

• With the same simplication as before:

c(e|f ; e, f) =
t(e|f)∑lf
i=0 t(e|fi)

le∑
j=1

δ(e, ej)

lf∑
i=0

δ(f, fi)

Chapter 4: Word-Based Models 27

IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

t(e|f ; e, f) =

∑
(e,f) c(e|f ; e, f))∑

e

∑
(e,f) c(e|f ; e, f))

Chapter 4: Word-Based Models 28

IBM Model 1 and EM: Pseudocode

Input: set of sentence pairs (e, f)
Output: translation prob. t(e|f)

1: initialize t(e|f) uniformly
2: while not converged do
3: // initialize
4: count(e|f) = 0 for all e, f
5: total(f) = 0 for all f
6: for all sentence pairs (e,f) do
7: // compute normalization
8: for all words e in e do
9: s-total(e) = 0

10: for all words f in f do
11: s-total(e) += t(e|f)
12: end for
13: end for

14: // collect counts
15: for all words e in e do
16: for all words f in f do
17: count(e|f) += t(e|f)

s-total(e)

18: total(f) += t(e|f)
s-total(e)

19: end for
20: end for
21: end for
22: // estimate probabilities
23: for all foreign words f do
24: for all English words e do
25: t(e|f) = count(e|f)

total(f)

26: end for
27: end for
28: end while

Chapter 4: Word-Based Models 29

Convergence
das Haus

the house

das Buch

the book

ein Buch

a book

e f initial 1st it. 2nd it. 3rd it. ... final

the das 0.25 0.5 0.6364 0.7479 ... 1
book das 0.25 0.25 0.1818 0.1208 ... 0
house das 0.25 0.25 0.1818 0.1313 ... 0
the buch 0.25 0.25 0.1818 0.1208 ... 0

book buch 0.25 0.5 0.6364 0.7479 ... 1
a buch 0.25 0.25 0.1818 0.1313 ... 0

book ein 0.25 0.5 0.4286 0.3466 ... 0
a ein 0.25 0.5 0.5714 0.6534 ... 1

the haus 0.25 0.5 0.4286 0.3466 ... 0
house haus 0.25 0.5 0.5714 0.6534 ... 1

Chapter 4: Word-Based Models 30

Perplexity

• How well does the model fit the data?

• Perplexity: derived from probability of the training data according to the model

log2PP = −
∑
s

log2 p(es|fs)

• Example (ε=1)

initial 1st it. 2nd it. 3rd it. ... final
p(the haus|das haus) 0.0625 0.1875 0.1905 0.1913 ... 0.1875
p(the book|das buch) 0.0625 0.1406 0.1790 0.2075 ... 0.25
p(a book|ein buch) 0.0625 0.1875 0.1907 0.1913 ... 0.1875

perplexity 4095 202.3 153.6 131.6 ... 113.8

Chapter 4: Word-Based Models 31

Ensuring Fluent Output

• Our translation model cannot decide between small and little

• Sometime one is preferred over the other:

– small step: 2,070,000 occurrences in the Google index
– little step: 257,000 occurrences in the Google index

• Language model

– estimate how likely a string is English
– based on n-gram statistics

p(e) = p(e1, e2, ..., en)

= p(e1)p(e2|e1)...p(en|e1, e2, ..., en−1)
' p(e1)p(e2|e1)...p(en|en−2, en−1)

Chapter 4: Word-Based Models 32

Noisy Channel Model

• We would like to integrate a language model

• Bayes rule

argmaxe p(e|f) = argmaxe
p(f |e) p(e)

p(f)

= argmaxe p(f |e) p(e)

Chapter 4: Word-Based Models 33

Noisy Channel Model

• Applying Bayes rule also called noisy channel model

– we observe a distorted message R (here: a foreign string f)
– we have a model on how the message is distorted (here: translation model)
– we have a model on what messages are probably (here: language model)
– we want to recover the original message S (here: an English string e)

Chapter 4: Word-Based Models 34

Higher IBM Models

IBM Model 1 lexical translation
IBM Model 2 adds absolute reordering model
IBM Model 3 adds fertility model
IBM Model 4 relative reordering model
IBM Model 5 fixes deficiency

• Only IBM Model 1 has global maximum

– training of a higher IBM model builds on previous model

• Compuationally biggest change in Model 3

– trick to simplify estimation does not work anymore
→ exhaustive count collection becomes computationally too expensive
– sampling over high probability alignments is used instead

Chapter 4: Word-Based Models 35

Reminder: IBM Model 1

• Generative model: break up translation process into smaller steps

– IBM Model 1 only uses lexical translation

• Translation probability

– for a foreign sentence f = (f1, ..., flf) of length lf
– to an English sentence e = (e1, ..., ele) of length le
– with an alignment of each English word ej to a foreign word fi according to

the alignment function a : j → i

p(e, a|f) =
ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

– parameter ε is a normalization constant

Chapter 4: Word-Based Models 36

IBM Model 2

Adding a model of alignment

natürlich ist haus klein

of course is the house small

das
1 2 4 53

of course the house is small
1 2 3 4 5 6

lexical translation step

alignment step

Chapter 4: Word-Based Models 37

IBM Model 2

• Modeling alignment with an alignment probability distribution

• Translating foreign word at position i to English word at position j:

a(i|j, le, lf)

• Putting everything together

p(e, a|f) = ε

le∏
j=1

t(ej|fa(j)) a(a(j)|j, le, lf)

• EM training of this model works the same way as IBM Model 1

Chapter 4: Word-Based Models 38

Interlude: HMM Model

• Words do not move independently of each other

– they often move in groups
→ condition word movements on previous word

• HMM alignment model:

p(a(j)|a(j − 1), le)

• EM algorithm application harder, requires dynamic programming

• IBM Model 4 is similar, also conditions on word classes

Chapter 4: Word-Based Models 39

IBM Model 3
Adding a model of fertilty

Chapter 4: Word-Based Models 40

IBM Model 3: Fertility

• Fertility: number of English words generated by a foreign word

• Modelled by distribution n(φ|f)

• Example:

n(1|haus) ' 1

n(2|zum) ' 1

n(0|ja) ' 1

Chapter 4: Word-Based Models 41

Sampling the Alignment Space

• Training IBM Model 3 with the EM algorithm

– The trick that reduces exponential complexity does not work anymore
→ Not possible to exhaustively consider all alignments

• Finding the most probable alignment by hillclimbing

– start with initial alignment
– change alignments for individual words
– keep change if it has higher probability
– continue until convergence

• Sampling: collecting variations to collect statistics

– all alignments found during hillclimbing
– neighboring alignments that differ by a move or a swap

Chapter 4: Word-Based Models 42

IBM Model 4

• Better reordering model

• Reordering in IBM Model 2 and 3

– recall: d(j||i, le, lf)
– for large sentences (large lf and le), sparse and unreliable statistics
– phrases tend to move together

• Relative reordering model: relative to previously translated words (cepts)

Chapter 4: Word-Based Models 43

IBM Model 4: Cepts
Foreign words with non-zero fertility forms cepts

(here 5 cepts)

ja nichtgeheich zum haus

not togodo the houseI

NULL

cept πi π1 π2 π3 π4 π5
foreign position [i] 1 2 4 5 6
foreign word f[i] ich gehe nicht zum haus

English words {ej} I go not to,the house
English positions {j} 1 4 3 5,6 7

center of cept �i 1 4 3 6 7

Chapter 4: Word-Based Models 44

IBM Model 4: Relative Distortion

j 1 2 3 4 5 6 7
ej I do not go to the house

in cept πi,k π1,0 π0,0 π3,0 π2,0 π4,0 π4,1 π5,0
�i−1 0 - 4 1 3 - 6

j −�i−1 +1 - −1 +3 +2 - +1
distortion d1(+1) 1 d1(−1) d1(+3) d1(+2) d>1(+1) d1(+1)

• Center �i of a cept πi is ceiling(avg(j))

• Three cases:

– uniform for null generated words
– first word of a cept: d1
– next words of a cept: d>1

Chapter 4: Word-Based Models 45

Word Classes

• Some words may trigger reordering → condition reordering on words

for initial word in cept: d1(j −�[i−1]|f[i−1], ej)
for additional words: d>1(j −Πi,k−1|ej)

• Sparse data concerns → cluster words into classes

for initial word in cept: d1(j −�[i−1]|A(f[i−1]),B(ej))

for additional words: d>1(j −Πi,k−1|B(ej))

Chapter 4: Word-Based Models 46

IBM Model 5

• IBM Models 1–4 are deficient

– some impossible translations have positive probability

– multiple output words may be placed in the same position

→ probability mass is wasted

• IBM Model 5 fixes deficiency by keeping track of vacancies (available positions)

Chapter 4: Word-Based Models 47

Conclusion

• IBM Models were the pioneering models in statistical machine translation

• Introduced important concepts

– generative model
– EM training
– reordering models

• Only used for niche applications as translation model

• ... but still in common use for word alignment (e.g., GIZA++ toolkit)

Chapter 4: Word-Based Models 48

Word Alignment

Given a sentence pair, which words correspond to each other?

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,

Chapter 4: Word-Based Models 49

Word Alignment?

here

live

not

does

john

jo
hn

hi
er

ni
ch

t

w
oh

nt

??

Is the English word does aligned to
the German wohnt (verb) or nicht (negation) or neither?

Chapter 4: Word-Based Models 50

Word Alignment?

bucket

the

kicked

john

jo
hn

in
s

gr
as

s

bi
ss

How do the idioms kicked the bucket and biss ins grass match up?
Outside this exceptional context, bucket is never a good translation for grass

Chapter 4: Word-Based Models 51

Measuring Word Alignment Quality

• Manually align corpus with sure (S) and possible (P) alignment points (S ⊆ P)

• Common metric for evaluation word alignments: Alignment Error Rate (AER)

AER(S, P ;A) =
|A ∩ S|+ |A ∩ P |
|A|+ |S|

• AER = 0: alignment A matches all sure, any possible alignment points

• However: different applications require different precision/recall trade-offs

Chapter 4: Word-Based Models 52

Word Alignment with IBM Models

• IBM Models create a many-to-one mapping

– words are aligned using an alignment function

– a function may return the same value for different input

(one-to-many mapping)

– a function can not return multiple values for one input

(no many-to-one mapping)

• Real word alignments have many-to-many mappings

Chapter 4: Word-Based Models 53

Symmetrizing Word Alignments

assumes

da
vo

n
house

the

in

stay

will

he

that

ge
ht

au
s

da
ss

er im ha
us

bl
ei

bt

,

michael

m
ic

ha
el

assumes

da
vo

n

house

the

in

stay

will

he

that

ge
ht

au
s

da
ss

er im ha
us

bl
ei

bt

,

michael

m
ic

ha
el

assumes

da
vo

n

house

the

in

stay

will

he

that

ge
ht

au
s

da
ss

er im ha
us

bl
ei

bt

,

michael

m
ic

ha
el

English to German German to English

Intersection / Union

• Intersection of GIZA++ bidirectional alignments
• Grow additional alignment points [Och and Ney, CompLing2003]

Chapter 4: Word-Based Models 54

Growing heuristic
grow-diag-final(e2f,f2e)

1: neighboring = {(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)}
2: alignment A = intersect(e2f,f2e); grow-diag(); final(e2f); final(f2e);

grow-diag()

1: while new points added do
2: for all English word e ∈ [1...en], foreign word f ∈ [1...fn], (e, f) ∈ A do
3: for all neighboring alignment points (enew, fnew) do
4: if (enew unaligned or fnew unaligned) and (enew, fnew) ∈ union(e2f,f2e) then
5: add (enew, fnew) to A
6: end if
7: end for
8: end for
9: end while

final()

1: for all English word enew ∈ [1...en], foreign word fnew ∈ [1...fn] do
2: if (enew unaligned or fnew unaligned) and (enew, fnew) ∈ union(e2f,f2e) then
3: add (enew, fnew) to A
4: end if
5: end for

Chapter 4: Word-Based Models 55

More Recent Work on Symmetrization

• Symmetrize after each iteration of IBM Models [Matusov et al., 2004]

– run one iteration of E-step for each direction
– symmetrize the two directions
– count collection (M-step)

• Use of posterior probabilities in symmetrization

– generate n-best alignments for each direction
– calculate how often an alignment point occurs in these alignments
– use this posterior probability during symmetrization

Chapter 4: Word-Based Models 56

Link Deletion / Addition Models

• Link deletion [Fossum et al., 2008]

– start with union of IBM Model alignment points
– delete one alignment point at a time
– uses a neural network classifiers that also considers aspects such as how

useful the alignment is for learning translation rules

• Link addition [Ren et al., 2007] [Ma et al., 2008]

– possibly start with a skeleton of highly likely alignment points
– add one alignment point at a time

Chapter 4: Word-Based Models 57

Discriminative Training Methods

• Given some annotated training data, supervised learning methods are possible

• Structured prediction

– not just a classification problem
– solution structure has to be constructed in steps

• Many approaches: maximum entropy, neural networks, support vector
machines, conditional random fields, MIRA, ...

• Small labeled corpus may be used for parameter tuning of unsupervised aligner
[Fraser and Marcu, 2007]

Chapter 4: Word-Based Models 58

Better Generative Models

• Aligning phrases

– joint model [Marcu and Wong, 2002]
– problem: EM algorithm likes really long phrases

• Fraser’s LEAF

– decomposes word alignment into many steps
– similar in spirit to IBM Models
– includes step for grouping into phrase

Chapter 4: Word-Based Models 59

Summary

• Lexical translation

• Alignment

• Expectation Maximization (EM) Algorithm

• Noisy Channel Model

• IBM Models 1–5

– IBM Model 1: lexical translation
– IBM Model 2: alignment model
– IBM Model 3: fertility
– IBM Model 4: relative alignment model
– IBM Model 5: deficiency

• Word Alignment

Chapter 4: Word-Based Models 60

