Chapter 7

Language models

Statistical Machine Translation

Language models

e Language models answer the question:

How likely is a string of English words good English?
e Help with reordering

pruv(the house is small) > p;,(small the is house)

e Help with word choice

puv(I am going home) > p; (I am going house)

Chapter 7: Language Models

N-Gram Language Models

e Given: a string of English words W = w1y, wo, w3, ..., w,
e Question: what is p(1W)?
e Sparse data: Many good English sentences will not have been seen before
— Decomposing p(W) using the chain rule:
p(wy, wo, w3, ..., wy) = p(wy) p(wa|wy) p(ws|wy, wa)...p(wy|wy, wa, ... w,_1)

(not much gained yet, p(w,,|w, ws, ...w, 1) is equally sparse)

Chapter 7: Language Models

Markov Chain

e Markov assumption:

— only previous history matters

— limited memory: only last £ words are included in history
(older words less relevant)

— kth order Markov model

e For instance 2-gram language model:
p(w1, w2, w3, ..., wn) =~ p(wy) p(wa|wr) p(ws|ws)...p(wn|w,—1)

e What is conditioned on, here w;_1 is called the history

Chapter 7: Language Models

Estimating N-Gram Probabilities

e Maximum likelihood estimation

count(wy, wo)

plwzlwn) = count(wn)

e Collect counts over a large text corpus

e Millions to billions of words are easy to get

(trillions of English words available on the web)

Chapter 7: Language Models

Example: 3-Gram

e Counts for trigrams and estimated word probabilities

the green (total: 1748) the red (total: 225) the blue (total: 54)

word C. prob. word C. prob. word | c. prob.
paper | 801 0.458 cross | 123 | 0.547 box | 16 | 0.296
group | 640 0.367 tape | 31 | 0.138 : 6 | 0.111
light | 110 0.063 army | 9 | 0.040 flag 6 | 0.111
party | 27 0.015 card I 0.031 : 3 | 0.056
ecu 21 0.012 : 5 | 0.022 angel | 3 | 0.056

— 225 trigrams in the Europarl corpus start with the red
— 123 of them end with cross

— maximum likelihood probability is 522 = 0.547.

Chapter 7: Language Models

How good is the LM?

e A good model assigns a text of real English 11 a high probability

e This can be also measured with cross entropy:

H(W) = logp(W})

e Or, perplexity

perplexity(W) = 27 (W)

Chapter 7: Language Models

Example: 4-Gram

prediction DL -logy Pra
pn(i|</s><s>) 0.109 3.197
pv(would|<s>1) 0.144 2.791
pru(like|i would) 0.489 1.031
pru(to|would like) 0.905 0.144
puv(commend|like to) 0.002 8.794
pru(thelto commend) 0.472 1.084
puu(rapporteur|commend the) | 0.147 2.763
puu(on|the rapporteur) 0.056 4.150
puu(his|rapporteur on) 0.194 2.367
pu(work|on his) 0.089 3.498
pru(-[his work) 0.290 1.785

pu(</s>|work) 0.99999 | 0.000014
average 2.634

Chapter 7: Language Models

Comparison 1-4-Gram

word unigram | bigram | trigram | 4-gram

i 6.684 3.197 3.197 3.197
would 3.342 2.834 2.791 2.791
like 9.129 2.026 1.031 1.290

to 5.081 0.402 0.144 0.113
commend 15.487 | 12.335 8.794 3.633
the 3.885 1.402 1.084 0.880
rapporteur 10.840 7.319 2.763 2.350
on 6.765 4.140 4.150 1.862
his 10.678 7.316 2.367 1.978
work 9.993 4.816 3.498 2.394

: 4.896 3.020 1.785 1.510

< /s> 4.828 0.005 0.000 0.000
average 8.051 4.072 2.634 2.251
perplexity | 265.136 | 16.817 6.206 4.758

Chapter 7: Language Models

Unseen N-Grams

e \We have seen i like to in our corpus
e \We have never seen 1 like to smooth in our corpus

— p(smoothli like to) = 0

e Any sentence that includes i like to smooth will be assigned probability 0

Chapter 7: Language Models

Add-One Smoothing

e For all possible n-grams, add the count of one.

_c+1
p_n+v
— ¢ = count of n-gram in corpus

— n = count of history
— v = vocabulary size

e But there are many more unseen n-grams than seen n-grams

e Example: Europarl 2-bigrams:

— 86, 700 distinct words
— 86,7002 = 7,516, 890, 000 possible bigrams
— but only about 30, 000,000 words (and bigrams) in corpus

Chapter 7: Language Models

10

Add-a Smoothing

e Add o < 1 to each count
cC+ «

n + ov

e What is a good value for a?

e Could be optimized on held-out set

Chapter 7: Language Models

11

Example: 2-Grams in Europarl

Count Adjusted count Test count

c (c+ 1) | (cta) 0 te

0 0.00378 0.00016 0.00016
1 0.00755 0.95725 0.46235
2 0.01133 1.91433 1.39946
3 0.01511 2.87141 2.34307
4 0.01888 3.82850 3.35202
5 0.02266 4.78558 4.35234
6 0.02644 5.74266 5.33762
8 0.03399 7.65683 7.15074
10 0.04155 9.57100 9.11927
20 0.07931 19.14183 18.95948

e Add-a smoothing with oo = 0.00017

e 1. are average counts of n-grams in test set that occurred ¢ times in corpus

Chapter 7: Language Models

12

Deleted Estimation

e Estimate true counts in held-out data

— split corpus in two halves: training and held-out

— counts in training Cy(wq, ..., wy,)

— number of ngrams with training count r: N,

— total times ngrams of training count r seen in held-out data: 7.

e Held-out estimator:
~ N.N

pr(wi, ..., wy) where count(wy, ..., w,) =1

e Both halves can be switched and results combined

T+ T7
N(N! + N2)

Ph(w1, ey wn) — where count(wl, ,wn) —

Chapter 7: Language Models

13

Good-Turing Smoothing

e Adjust actual counts r to expected counts r* with formula

Nr+1
Ny

r*=(r+1)

— N, number of n-grams that occur exactly r times in corpus

— Ny total number of n-grams

Chapter 7: Language Models

14

Good-Turing for 2-Grams in Europarl

Count | Count of counts | Adjusted count | Test count

r N, r* t

0 7,514,941,065 0.00015 0.00016
1 1,132,844 0.46539 0.46235
2 263,611 1.40679 1.39946
3 123,615 2.38767 2.34307
4 73,788 3.33753 3.35202
5 49,254 4.36967 4.35234
6 35,869 5.32928 5.33762
8 21,693 7.43798 7.15074
10 14,880 0.31304 0.11927
20 4,546 19.54487 18.95948

adjusted count fairly accurate when compared against the test count

Chapter 7: Language Models

15

Derivation of Good-Turing

e A specific n-gram « occurs with (unknown) probability p in the corpus
e Assumption: all occurrences of an n-gram « are independent of each other

e Number of times « occurs in corpus follows binomial distribution

ple(a) =1) =b(r; N,p;) = (f)ﬁr(l)N

Chapter 7: Language Models

16

Derivation of Good-Turing (2)

e Goal of Good-Turing smoothing: compute expected count c*

e Expected count can be computed with help from binomial distribution:

e Note again: p is unknown, we cannot actually compute this

Chapter 7: Language Models

17

Derivation of Good-Turing (3)

e Definition: expected number of n-grams that occur r times: En(N,)

e We have s different n-grams in corpus

— let us call them aq, ..., a;
— each occurs with probability pq, ..., ps, respectively

e Given the previous formulae, we can compute

:ip((;(ai):r
—Z()pzl—pz) -

e Note again: p, is unknown, we cannot actually compute this

Chapter 7: Language Models

18

Derivation of Good-Turing (4)

e Reflection

— we derived a formula to compute En(N,.)

— we have N,
— for small r: En(N,) >~ N,

e Ultimate goal compute expected counts c*, given actual counts ¢

Chapter 7: Language Models

19

Derivation of Good-Turing (5)
e For a particular n-gram «, we know its actual count r
e Any of the n-grams a; may occur r times

e Probability that « is one specific o;

5 _plela) =+

- i p(e(ay) =7)

pla = ailc(a) =

e Expected count of this n-gram «

Chapter 7: Language Models

Derivation of Good-Turing (6)

e Combining the last two equations:

* ple(a) = 1)
B @pe) =) = NPT

:Zilepi p(c(ai) =)
D=1 p(claj) =T1)

e We will now transform this equation to derive Good-Turing smoothing

Chapter 7: Language Models 21

Derivation of Good-Turing (7)

e Repeat:

r)

_ 2z NV pi ple(a)

Blela)ldla) =r) = == r i)

r)

e Denominator is our definition of expected counts En (V)

Chapter 7: Language Models

22

Derivation of Good-Turing (8)

e Numerator:

Chapter 7: Language Models

23

Derivation of Good-Turing (9)

e Using the simplifications of numerator and denominator:

e QED

r* = E(c"(a)lc(a) =)
_(r+1) Enp1(Nrya)
En(N;)
Nyyq
Ny

~ (r+1)

Chapter 7: Language Models

24

Back-Off

e In given corpus, we may never observe
— Scottish beer drinkers

— Scottish beer eaters

e Both have count 0
— our smoothing methods will assign them same probability

e Better: backoff to bigrams:

— beer drinkers
— beer eaters

Chapter 7: Language Models

25

Interpolation

e Higher and lower order n-gram models have different strengths and weaknesses

— high-order n-grams are sensitive to more context, but have sparse counts
— low-order n-grams consider only very limited context, but have robust counts

e Combine them

pr(ws|wi, w2) = A1 p1(ws)
X Ao p2(ws3|ws)

X A3 p3(w3\w1,w2)

Chapter 7: Language Models 26

Recursive Interpolation

e We can trust some histories w; 1, ..., w;_1 more than others

e Condition interpolation weights on history: Ay, .\ . w,

e Recursive definition of interpolation

qu;(’wi’wi—n—l—la ---»wz’—l) — Awi_nﬂ,...,wi_l pn(wi‘wi—n—i—la -~awi—1) +

+ (1- >‘wz'—n+1,---,wz-_1) p{%—l(wi‘wi—n—l—% ey Wi—1)

Chapter 7: Language Models 27

Back-Off

e Trust the highest order language model that contains n-gram

)
an(wz’|wi—n—|—17 te wi—l)

if count,, (w;_pa1,...,w;) >0

dn(wz’—n—l—la oo wi—l) pif?l(wi\wi_mz, oo wi—l)
else

e Requires

— adjusted prediction model «, (w;|w; n11, ... wi—1)
— discounting function d,, (w1, ..., wy,_1)

Chapter 7: Language Models

28

Back-Off with Good-Turing Smoothing

e Previously, we computed n-gram probabilities based on relative frequency

count(wsy, wo)

plwzlws) = count(wy)

e Good Turing smoothing adjusts counts ¢ to expected counts c*

count™ (w1, ws) < count(wy, ws)

e We use these expected counts for the prediction model (but 0* remains 0)

count™ (w1, wo)

alwsfwn) = count(wn)

e This leaves probability mass for the discounting function

dy(w1) =1 =) o(wa|w)

Chapter 7: Language Models

Diversity of Predicted Words

e Consider the bigram histories spite and constant

— both occur 993 times in Europarl corpus

— only 9 different words follow spite
almost always followed by of (979 times), due to expression in spite of

— 415 different words follow constant
most frequent: and (42 times), concern (27 times), pressure (26 times),
but huge tail of singletons: 268 different words

e More likely to see new bigram that starts with constant than spite

e Witten-Bell smoothing considers diversity of predicted words

Chapter 7: Language Models 30

Witten-Bell Smoothing

e Recursive interpolation method

e Number of possible extensions of a history w1, ..., w, _1 in training data

Nip(wi, .oy Wp_1,0) = [{wy, : c(wy, ..., Wp_1,wy,) > 0}

e Lambda parameters

Chapter 7: Language Models

31

Witten-Bell Smoothing: Examples

Let us apply this to our two examples:

Nl-l—(Spite? .)
>\spite — N . .
1+ (spite, ®) + >~ c(spite, wy,)

1 —

= 0.00898

" 9+ 993

N1, (constant, e)

I—A =
constant N1+(constant, .) —+ an C(COHStant, ’wn)

415

= = 0.29474
415 + 993

Chapter 7: Language Models

32

Diversity of Histories

e Consider the word York

— fairly frequent word in Europarl corpus, occurs 477 times
— as frequent as foods, indicates and providers
— In unigram language model: a respectable probability

e However, it almost always directly follows New (473 times)

e Recall: unigram model only used, if the bigram model inconclusive

— York unlikely second word in unseen bigram
— in back-off unigram model, York should have low probability

Chapter 7: Language Models

33

Kneser-Ney Smoothing
e Kneser-Ney smoothing takes diversity of histories into account

e Count of histories for a word

Nii(ow) = [{w; : c(w;, w) > 0}

e Recall: maximum likelihood estimation of unigram language model

c(w)

P) = 5

e In Kneser-Ney smoothing, replace raw counts with count of histories

_ Ny (ew)
D ap; N1 (ow;)

pKN(w)

Chapter 7: Language Models

Modified Kneser-Ney Smoothing

e Based on interpolation

)
an(wi|wi—n+17 “e wi—l)

If countn(wi_nﬂ, e wz) > 0

dn(wi—n—l—la oo wz’—l) p7§91(wi‘wz'—n—|—27 ooy wi—l)
else

e Requires

— adjusted prediction model «,, (w;|w; —n11, ... wi—1)
— discounting function d,, (w1, ..., wy,_1)

Chapter 7: Language Models 35

Formula for o for Highest Order N-Gram Model
e Absolute discounting: subtract a fixed D from all non-zero counts

c(wy, ...,w,) — D

> (Wi, ., wp_1,w)

a(wp|w, ooy wy 1) =

e Refinement: three different discount values

(D, ifc=1
D(c)={Dy ifc=2
D3, ife>3

Chapter 7: Language Models 36

Discount Parameters

e Optimal discounting parameters D, Do, D3, can be computed quite easily

- Ny +2N,

-

D, =1-2Y-2
Ny

N3

Dy =2 —-3Y—
2 N
Ny

D =3 —4Y —
34 N,

e Values V. are the counts of n-grams with exactly count ¢

Chapter 7: Language Models

37

Formula for d for Highest Order N-Gram Model

e Probability mass set aside from seen events

Zi€{1,2,3+} DiNi(w1, vouy wn—10)
an C(w17 reey wn)

d(wl, caey wn_l) —

o N, for i € {1,2,3+} are computed based on the count of extensions of a
history w1, ..., w,_1 with count 1, 2, and 3 or more, respectively.

e Similar to Witten-Bell smoothing

Chapter 7: Language Models 38

Formula for a for Lower Order N-Gram Models

e Recall: base on count of histories N1, (ew) in which word may appear, not
raw counts.

(U010 1) = e) =
Ty oee —1) —
" P Zle—l-(.wl?“‘?wn_l’w)

e Again, three different values for D (Dy, Dy, D3), based on the count of the
history w1, ..., w,_1

Chapter 7: Language Models 39

Formula for d for Lower Order N-Gram Models

e Probability mass set aside available for the d function

Zi€{1,2,3+} DiNi<w1, ooy wn—l')
Ewn C(w17 eeey wn)

d(wl, cony wn_l) —

Chapter 7: Language Models

40

Interpolated Back-Off

e Back-off models use only highest order n-gram

— if sparse, not very reliable.
— two different n-grams with same history occur once — same probability
— one may be an outlier, the other under-represented in training

e To remedy this, always consider the lower-order back-off models
e Adapting the a function into interpolated a; function by adding back-off

ar(wp|wy, .., Wy 1) = a(wy|wy, ..., Wy 1)

+ d(w1, ..., wp_1) pr(wy|wa, ..., wp_1)

e Note that d function needs to be adapted as well

Chapter 7: Language Models

41

Evaluation

Evaluation of smoothing methods:

Perplexity for language models trained on the Europarl corpus

Smoothing method bigram | trigram | 4-gram
Good-Turing 96.2 62.9 59.9
Witten-Bell 97.1 63.8 60.4
Modified Kneser-Ney 95.4 61.6 58.6
Interpolated Modified Kneser-Ney 04.5 59.3 54.0

Chapter 7:

Language Models

Managing the Size of the Model

e Millions to billions of words are easy to get

(trillions of English words available on the web)

e But: huge language models do not fit into RAM

Chapter 7: Language Models

43

Number of Unique N-Grams

Number of unique n-grams in Europarl corpus
29,501,088 tokens (words and punctuation)

Order Unique n-grams Singletons
unigram 86,700 33,447 (38.6%)
bigram 1,948,935 | 1,132,844 (58.1%)
trigram 8,002,798 | 6,022,286 (74.4%)
4-gram 15,303,847 | 13,081,621 (85.5%)
5-gram 19,882,175 | 18,324,577 (92.2%)

— remove singletons of higher order n-grams

Chapter 7: Language Models 44

Estimation on Disk
e Language models too large to build

e \What needs to be stored in RAM?

— maximum likelihood estimation
count(wx, ..., wy,)

p(wp|w, ..oywp_1) = count(wy, ..., Wy_1)

— can be done separately for each history w1, ..., w,,_1
e Keep data on disk

— extract all n-grams into files on-disk
— sort by history on disk
— only keep n-grams with shared history in RAM

e Smoothing techniques may require additional statistics

Chapter 7: Language Models

45

Efficient Data Structures

4-g ram
the very large
boff:-0.385
important
boff:-0.231
best
Very boff:-0.302
serious
boff:-0.146

3-gram backoff

very

large
boff:-0.106

important
boff:-0.250

best
boff:-0.082

serious
boff:-0.176

2-gram backoff

majority p:-1.147

|| numberp:-0.275

and p:-1.430
areas p:-1.728
challenge p:-2.171

discussion p:-2.145
factp:-2.128
international p:-1.866
issue p:-1.157

™| debate p:-1.837
.
.

amount p:-2.510
amounts p:-1.633
and p:-1.449
areap:-2.658
companies p:-1.536
cuts p:-2.225
degree p:-2.933
extent p:-2.208
financial p:-2.383
foreign p:-3.428

large
boff:-0.470

S

accept p:-3.791
acceptable p:-3.778
accession p:-3.762
accidents p:-3.806

accountancy p:-3.416
accumulated p:-3.885
accumulation p:-3.895

action p:-3.510

additional p:-3.334
administration p:-3.729

1-gram backoff

aa-afns p:-6.154
aachen p:-5.734
aaiun p:-6.154
aalborg p:-6.154
aarhus p:-5.734
aaron p:-6.154
aartsen p:-6.154
abp:-5.734
abacha p:-5.156
aback p:-5.876

Need to store probabilities for

— the very large majority
the very language number

Both share history the very
large

no need to store history twice

Trie

Chapter 7: Language Models

46

Fewer Bits to Store Probabilities

e Index for words

— two bytes allow a vocabulary of 216 = 65,536 words, typically more needed
— Huffman coding to use fewer bits for frequent words.

e Probabilities

— typically stored in log format as floats (4 or 8 bytes)
— quantization of probabilities to use even less memory, maybe just 4-8 bits

Chapter 7: Language Models 47

Reducing Vocabulary Size

e For instance: each number is treated as a separate token

e Replace them with a number token NUM
— but: we want our language model to prefer

pou (I pay 950.00 in May 2007) > p.u(I pay 2007 in May 950.00)
— not possible with number token

puu(l pay NUM in May NUM) = p, (I pay NUM in May NUM)

e Replace each digit (with unique symbol, e.g., @ or 5), retain some distinctions

puu(l pay 555.55 in May 5555) > pu (I pay 5555 in May 555.55)

Chapter 7: Language Models 48

Filtering Irrelevant N-Grams

e \We use language model in decoding

— we only produce English words in translation options
— filter language model down to n-grams containing only those words

e Ratio of 5-grams needed to all 5-grams (by sentence length):

0.16

0.14
0.12 4

0.1+ A N
+ }ri o+ +
+ + Hot i
S et s o+
MR T

+

0.08 + f A
0.06 r
0.04

0.02 r

ratio of 5-grams required (bag-of-words)

80 100 120
sentence length

Chapter 7: Language Models

Summary

e Language models: How likely is a string of English words good English?
e N-gram models (Markov assumption)
e Perplexity

e Count smoothing
— add-one, add-«
— deleted estimation
— Good Turing

e Interpolation and backoff

— Good Turing
— Witten-Bell
— Kneser-Ney

e Managing the size of the model

Chapter 7: Language Models

50

