
Chapter 7

Language models

Statistical Machine Translation

Language models

• Language models answer the question:

How likely is a string of English words good English?

• Help with reordering

plm(the house is small) > plm(small the is house)

• Help with word choice

plm(I am going home) > plm(I am going house)

Chapter 7: Language Models 1

N-Gram Language Models

• Given: a string of English words W = w1, w2, w3, ..., wn

• Question: what is p(W)?

• Sparse data: Many good English sentences will not have been seen before

→ Decomposing p(W) using the chain rule:

p(w1, w2, w3, ..., wn) = p(w1) p(w2|w1) p(w3|w1, w2)...p(wn|w1, w2, ...wn−1)

(not much gained yet, p(wn|w1, w2, ...wn−1) is equally sparse)

Chapter 7: Language Models 2

Markov Chain

• Markov assumption:

– only previous history matters
– limited memory: only last k words are included in history

(older words less relevant)
→ kth order Markov model

• For instance 2-gram language model:

p(w1, w2, w3, ..., wn) ' p(w1) p(w2|w1) p(w3|w2)...p(wn|wn−1)

• What is conditioned on, here wi−1 is called the history

Chapter 7: Language Models 3

Estimating N-Gram Probabilities

• Maximum likelihood estimation

p(w2|w1) =
count(w1, w2)

count(w1)

• Collect counts over a large text corpus

• Millions to billions of words are easy to get

(trillions of English words available on the web)

Chapter 7: Language Models 4

Example: 3-Gram

• Counts for trigrams and estimated word probabilities

the green (total: 1748)

word c. prob.

paper 801 0.458
group 640 0.367
light 110 0.063
party 27 0.015
ecu 21 0.012

the red (total: 225)

word c. prob.

cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

, 5 0.022

the blue (total: 54)

word c. prob.

box 16 0.296
. 6 0.111

flag 6 0.111
, 3 0.056

angel 3 0.056

– 225 trigrams in the Europarl corpus start with the red
– 123 of them end with cross
→ maximum likelihood probability is 123

225 = 0.547.

Chapter 7: Language Models 5

How good is the LM?

• A good model assigns a text of real English W a high probability

• This can be also measured with cross entropy:

H(W) =
1
n

log p(Wn
1)

• Or, perplexity
perplexity(W) = 2H(W)

Chapter 7: Language Models 6

Example: 4-Gram
prediction plm -log2 plm

plm(i|</s><s>) 0.109 3.197
plm(would|<s>i) 0.144 2.791
plm(like|i would) 0.489 1.031
plm(to|would like) 0.905 0.144

plm(commend|like to) 0.002 8.794
plm(the|to commend) 0.472 1.084

plm(rapporteur|commend the) 0.147 2.763
plm(on|the rapporteur) 0.056 4.150
plm(his|rapporteur on) 0.194 2.367
plm(work|on his) 0.089 3.498
plm(.|his work) 0.290 1.785
plm(</s>|work .) 0.99999 0.000014

average 2.634

Chapter 7: Language Models 7

Comparison 1–4-Gram
word unigram bigram trigram 4-gram

i 6.684 3.197 3.197 3.197
would 8.342 2.884 2.791 2.791
like 9.129 2.026 1.031 1.290
to 5.081 0.402 0.144 0.113

commend 15.487 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880

rapporteur 10.840 7.319 2.763 2.350
on 6.765 4.140 4.150 1.862
his 10.678 7.316 2.367 1.978

work 9.993 4.816 3.498 2.394
. 4.896 3.020 1.785 1.510

</s> 4.828 0.005 0.000 0.000

average 8.051 4.072 2.634 2.251
perplexity 265.136 16.817 6.206 4.758

Chapter 7: Language Models 8

Unseen N-Grams

• We have seen i like to in our corpus

• We have never seen i like to smooth in our corpus

→ p(smooth|i like to) = 0

• Any sentence that includes i like to smooth will be assigned probability 0

Chapter 7: Language Models 9

Add-One Smoothing

• For all possible n-grams, add the count of one.

p =
c+ 1
n+ v

– c = count of n-gram in corpus
– n = count of history
– v = vocabulary size

• But there are many more unseen n-grams than seen n-grams

• Example: Europarl 2-bigrams:

– 86, 700 distinct words
– 86, 7002 = 7, 516, 890, 000 possible bigrams
– but only about 30, 000, 000 words (and bigrams) in corpus

Chapter 7: Language Models 10

Add-α Smoothing

• Add α < 1 to each count

p =
c+ α

n+ αv

• What is a good value for α?

• Could be optimized on held-out set

Chapter 7: Language Models 11

Example: 2-Grams in Europarl

Count Adjusted count Test count
c (c+ 1) n

n+v2 (c+ α) n
n+αv2 tc

0 0.00378 0.00016 0.00016
1 0.00755 0.95725 0.46235
2 0.01133 1.91433 1.39946
3 0.01511 2.87141 2.34307
4 0.01888 3.82850 3.35202
5 0.02266 4.78558 4.35234
6 0.02644 5.74266 5.33762
8 0.03399 7.65683 7.15074

10 0.04155 9.57100 9.11927
20 0.07931 19.14183 18.95948

• Add-α smoothing with α = 0.00017
• tc are average counts of n-grams in test set that occurred c times in corpus

Chapter 7: Language Models 12

Deleted Estimation

• Estimate true counts in held-out data

– split corpus in two halves: training and held-out
– counts in training Ct(w1, ..., wn)
– number of ngrams with training count r: Nr
– total times ngrams of training count r seen in held-out data: Tr

• Held-out estimator:

ph(w1, ..., wn) =
Tr
NrN

where count(w1, ..., wn) = r

• Both halves can be switched and results combined

ph(w1, ..., wn) =
T 1
r + T 2

r

N(N1
r +N2

r)
where count(w1, ..., wn) = r

Chapter 7: Language Models 13

Good-Turing Smoothing

• Adjust actual counts r to expected counts r∗ with formula

r∗ = (r + 1)
Nr+1

Nr

– Nr number of n-grams that occur exactly r times in corpus

– N0 total number of n-grams

Chapter 7: Language Models 14

Good-Turing for 2-Grams in Europarl

Count Count of counts Adjusted count Test count
r Nr r∗ t
0 7,514,941,065 0.00015 0.00016
1 1,132,844 0.46539 0.46235
2 263,611 1.40679 1.39946
3 123,615 2.38767 2.34307
4 73,788 3.33753 3.35202
5 49,254 4.36967 4.35234
6 35,869 5.32928 5.33762
8 21,693 7.43798 7.15074

10 14,880 9.31304 9.11927
20 4,546 19.54487 18.95948

adjusted count fairly accurate when compared against the test count

Chapter 7: Language Models 15

Derivation of Good-Turing

• A specific n-gram α occurs with (unknown) probability p in the corpus

• Assumption: all occurrences of an n-gram α are independent of each other

• Number of times α occurs in corpus follows binomial distribution

p(c(α) = r) = b(r;N, pi) =
(
N

r

)
pr(1− p)N−r

Chapter 7: Language Models 16

Derivation of Good-Turing (2)

• Goal of Good-Turing smoothing: compute expected count c∗

• Expected count can be computed with help from binomial distribution:

E(c∗(α)) =
N∑
r=0

r p(c(α) = r)

=
N∑
r=0

r

(
N

r

)
pr(1− p)N−r

• Note again: p is unknown, we cannot actually compute this

Chapter 7: Language Models 17

Derivation of Good-Turing (3)

• Definition: expected number of n-grams that occur r times: EN(Nr)

• We have s different n-grams in corpus

– let us call them α1, ..., αs
– each occurs with probability p1, ..., ps, respectively

• Given the previous formulae, we can compute

EN(Nr) =
s∑
i=1

p(c(αi) = r)

=
s∑
i=1

(
N

r

)
pri (1− pi)N−r

• Note again: pi is unknown, we cannot actually compute this

Chapter 7: Language Models 18

Derivation of Good-Turing (4)

• Reflection

– we derived a formula to compute EN(Nr)
– we have Nr
– for small r: EN(Nr) ' Nr

• Ultimate goal compute expected counts c∗, given actual counts c

E(c∗(α)|c(α) = r)

Chapter 7: Language Models 19

Derivation of Good-Turing (5)

• For a particular n-gram α, we know its actual count r

• Any of the n-grams αi may occur r times

• Probability that α is one specific αi

p(α = αi|c(α) = r) =
p(c(αi) = r)∑s
j=1 p(c(αj) = r)

• Expected count of this n-gram α

E(c∗(α)|c(α) = r) =
s∑
i=1

N pi p(α = αi|c(α) = r)

Chapter 7: Language Models 20

Derivation of Good-Turing (6)

• Combining the last two equations:

E(c∗(α)|c(α) = r) =
s∑
i=1

N pi
p(c(αi) = r)∑s
j=1 p(c(αj) = r)

=
∑s
i=1N pi p(c(αi) = r)∑s
j=1 p(c(αj) = r)

• We will now transform this equation to derive Good-Turing smoothing

Chapter 7: Language Models 21

Derivation of Good-Turing (7)

• Repeat:

E(c∗(α)|c(α) = r) =
∑s
i=1N pi p(c(αi) = r)∑s
j=1 p(c(αj) = r)

• Denominator is our definition of expected counts EN(Nr)

Chapter 7: Language Models 22

Derivation of Good-Turing (8)

• Numerator:

s∑
i=1

N pi p(c(αi) = r) =
s∑
i=1

N pi

(
N

r

)
pri (1− pi)N−r

= N
N !

N − r!r!
pr+1
i (1− pi)N−r

= N
(r + 1)
N + 1

N + 1!
N − r!r + 1!

pr+1
i (1− pi)N−r

= (r + 1)
N

N + 1
EN+1(Nr+1)

' (r + 1) EN+1(Nr+1)

Chapter 7: Language Models 23

Derivation of Good-Turing (9)

• Using the simplifications of numerator and denominator:

r∗ = E(c∗(α)|c(α) = r)

=
(r + 1) EN+1(Nr+1)

EN(Nr)

' (r + 1)
Nr+1

Nr

• QED

Chapter 7: Language Models 24

Back-Off

• In given corpus, we may never observe

– Scottish beer drinkers
– Scottish beer eaters

• Both have count 0

→ our smoothing methods will assign them same probability

• Better: backoff to bigrams:

– beer drinkers
– beer eaters

Chapter 7: Language Models 25

Interpolation

• Higher and lower order n-gram models have different strengths and weaknesses

– high-order n-grams are sensitive to more context, but have sparse counts
– low-order n-grams consider only very limited context, but have robust counts

• Combine them

pI(w3|w1, w2) = λ1 p1(w3)

× λ2 p2(w3|w2)

× λ3 p3(w3|w1, w2)

Chapter 7: Language Models 26

Recursive Interpolation

• We can trust some histories wi−n+1, ..., wi−1 more than others

• Condition interpolation weights on history: λwi−n+1,...,wi−1

• Recursive definition of interpolation

pIn(wi|wi−n+1, ..., wi−1) = λwi−n+1,...,wi−1
pn(wi|wi−n+1, ..., wi−1) +

+ (1− λwi−n+1,...,wi−1
) pIn−1(wi|wi−n+2, ..., wi−1)

Chapter 7: Language Models 27

Back-Off

• Trust the highest order language model that contains n-gram

pBOn (wi|wi−n+1, ..., wi−1) =

=


αn(wi|wi−n+1, ..., wi−1)

if countn(wi−n+1, ..., wi) > 0

dn(wi−n+1, ..., wi−1) pBOn−1(wi|wi−n+2, ..., wi−1)
else

• Requires

– adjusted prediction model αn(wi|wi−n+1, ..., wi−1)
– discounting function dn(w1, ..., wn−1)

Chapter 7: Language Models 28

Back-Off with Good-Turing Smoothing

• Previously, we computed n-gram probabilities based on relative frequency

p(w2|w1) =
count(w1, w2)

count(w1)

• Good Turing smoothing adjusts counts c to expected counts c∗

count∗(w1, w2) ≤ count(w1, w2)

• We use these expected counts for the prediction model (but 0∗ remains 0)

α(w2|w1) =
count∗(w1, w2)

count(w1)

• This leaves probability mass for the discounting function

d2(w1) = 1−
∑
w2

α(w2|w1)

Chapter 7: Language Models 29

Diversity of Predicted Words

• Consider the bigram histories spite and constant

– both occur 993 times in Europarl corpus

– only 9 different words follow spite
almost always followed by of (979 times), due to expression in spite of

– 415 different words follow constant
most frequent: and (42 times), concern (27 times), pressure (26 times),
but huge tail of singletons: 268 different words

• More likely to see new bigram that starts with constant than spite

• Witten-Bell smoothing considers diversity of predicted words

Chapter 7: Language Models 30

Witten-Bell Smoothing

• Recursive interpolation method

• Number of possible extensions of a history w1, ..., wn−1 in training data

N1+(w1, ..., wn−1, •) = |{wn : c(w1, ..., wn−1, wn) > 0}|

• Lambda parameters

1− λw1,...,wn−1 =
N1+(w1, ..., wn−1, •)

N1+(w1, ..., wn−1, •) +
∑
wn
c(w1, ..., wn−1, wn)

Chapter 7: Language Models 31

Witten-Bell Smoothing: Examples

Let us apply this to our two examples:

1− λspite =
N1+(spite, •)

N1+(spite, •) +
∑
wn
c(spite, wn)

=
9

9 + 993
= 0.00898

1− λconstant =
N1+(constant, •)

N1+(constant, •) +
∑
wn
c(constant, wn)

=
415

415 + 993
= 0.29474

Chapter 7: Language Models 32

Diversity of Histories

• Consider the word York

– fairly frequent word in Europarl corpus, occurs 477 times
– as frequent as foods, indicates and providers
→ in unigram language model: a respectable probability

• However, it almost always directly follows New (473 times)

• Recall: unigram model only used, if the bigram model inconclusive

– York unlikely second word in unseen bigram
– in back-off unigram model, York should have low probability

Chapter 7: Language Models 33

Kneser-Ney Smoothing

• Kneser-Ney smoothing takes diversity of histories into account

• Count of histories for a word

N1+(•w) = |{wi : c(wi, w) > 0}|

• Recall: maximum likelihood estimation of unigram language model

pML(w) =
c(w)∑
i c(wi)

• In Kneser-Ney smoothing, replace raw counts with count of histories

pKN(w) =
N1+(•w)∑
wi
N1+(•wi)

Chapter 7: Language Models 34

Modified Kneser-Ney Smoothing

• Based on interpolation

pBOn (wi|wi−n+1, ..., wi−1) =

=


αn(wi|wi−n+1, ..., wi−1)

if countn(wi−n+1, ..., wi) > 0

dn(wi−n+1, ..., wi−1) pBOn−1(wi|wi−n+2, ..., wi−1)
else

• Requires

– adjusted prediction model αn(wi|wi−n+1, ..., wi−1)
– discounting function dn(w1, ..., wn−1)

Chapter 7: Language Models 35

Formula for α for Highest Order N-Gram Model

• Absolute discounting: subtract a fixed D from all non-zero counts

α(wn|w1, ..., wn−1) =
c(w1, ..., wn)−D∑
w c(w1, ..., wn−1, w)

• Refinement: three different discount values

D(c) =


D1 if c = 1
D2 if c = 2
D3+ if c ≥ 3

Chapter 7: Language Models 36

Discount Parameters

• Optimal discounting parameters D1, D2, D3+ can be computed quite easily

Y =
N1

N1 + 2N2

D1 = 1− 2Y
N2

N1

D2 = 2− 3Y
N3

N2

D3+ = 3− 4Y
N4

N3

• Values Nc are the counts of n-grams with exactly count c

Chapter 7: Language Models 37

Formula for d for Highest Order N-Gram Model

• Probability mass set aside from seen events

d(w1, ..., wn−1) =

∑
i∈{1,2,3+}DiNi(w1, ..., wn−1•)∑

wn
c(w1, ..., wn)

• Ni for i ∈ {1, 2, 3+} are computed based on the count of extensions of a
history w1, ..., wn−1 with count 1, 2, and 3 or more, respectively.

• Similar to Witten-Bell smoothing

Chapter 7: Language Models 38

Formula for α for Lower Order N-Gram Models

• Recall: base on count of histories N1+(•w) in which word may appear, not
raw counts.

α(wn|w1, ..., wn−1) =
N1+(•w1, ..., wn)−D∑
wN1+(•w1, ..., wn−1, w)

• Again, three different values for D (D1, D2, D3+), based on the count of the
history w1, ..., wn−1

Chapter 7: Language Models 39

Formula for d for Lower Order N-Gram Models

• Probability mass set aside available for the d function

d(w1, ..., wn−1) =

∑
i∈{1,2,3+}DiNi(w1, ..., wn−1•)∑

wn
c(w1, ..., wn)

Chapter 7: Language Models 40

Interpolated Back-Off

• Back-off models use only highest order n-gram

– if sparse, not very reliable.
– two different n-grams with same history occur once → same probability
– one may be an outlier, the other under-represented in training

• To remedy this, always consider the lower-order back-off models

• Adapting the α function into interpolated αI function by adding back-off

αI(wn|w1, ..., wn−1) = α(wn|w1, ..., wn−1)

+ d(w1, ..., wn−1) pI(wn|w2, ..., wn−1)

• Note that d function needs to be adapted as well

Chapter 7: Language Models 41

Evaluation

Evaluation of smoothing methods:

Perplexity for language models trained on the Europarl corpus

Smoothing method bigram trigram 4-gram
Good-Turing 96.2 62.9 59.9
Witten-Bell 97.1 63.8 60.4
Modified Kneser-Ney 95.4 61.6 58.6
Interpolated Modified Kneser-Ney 94.5 59.3 54.0

Chapter 7: Language Models 42

Managing the Size of the Model

• Millions to billions of words are easy to get

(trillions of English words available on the web)

• But: huge language models do not fit into RAM

Chapter 7: Language Models 43

Number of Unique N-Grams

Number of unique n-grams in Europarl corpus

29,501,088 tokens (words and punctuation)

Order Unique n-grams Singletons
unigram 86,700 33,447 (38.6%)
bigram 1,948,935 1,132,844 (58.1%)
trigram 8,092,798 6,022,286 (74.4%)
4-gram 15,303,847 13,081,621 (85.5%)
5-gram 19,882,175 18,324,577 (92.2%)

→ remove singletons of higher order n-grams

Chapter 7: Language Models 44

Estimation on Disk

• Language models too large to build

• What needs to be stored in RAM?

– maximum likelihood estimation

p(wn|w1, ..., wn−1) =
count(w1, ..., wn)

count(w1, ..., wn−1)
– can be done separately for each history w1, ..., wn−1

• Keep data on disk

– extract all n-grams into files on-disk
– sort by history on disk
– only keep n-grams with shared history in RAM

• Smoothing techniques may require additional statistics

Chapter 7: Language Models 45

Efficient Data Structures

verythe large
boff:-0.385

majority p:-1.147
number p:-0.275

important
boff:-0.231

and p:-1.430
areas p:-1.728

challenge p:-2.171
debate p:-1.837

discussion p:-2.145
fact p:-2.128

international p:-1.866
issue p:-1.157

...

best
boff:-0.302

serious
boff:-0.146

very

very large
boff:-0.106

amount p:-2.510
amounts p:-1.633

and p:-1.449
area p:-2.658

companies p:-1.536
cuts p:-2.225

degree p:-2.933
extent p:-2.208

financial p:-2.383
foreign p:-3.428

...

important
boff:-0.250

best
boff:-0.082

serious
boff:-0.176

4-gram

3-gram backoff

large
boff:-0.470

accept p:-3.791
acceptable p:-3.778
accession p:-3.762
accidents p:-3.806

accountancy p:-3.416
accumulated p:-3.885
accumulation p:-3.895

action p:-3.510
additional p:-3.334

administration p:-3.729
...

2-gram backoff
aa-afns p:-6.154
aachen p:-5.734
aaiun p:-6.154

aalborg p:-6.154
aarhus p:-5.734
aaron p:-6.154

aartsen p:-6.154
ab p:-5.734

abacha p:-5.156
aback p:-5.876

...

1-gram backoff

• Need to store probabilities for

– the very large majority
– the very language number

• Both share history the very
large

→ no need to store history twice

→ Trie

Chapter 7: Language Models 46

Fewer Bits to Store Probabilities

• Index for words

– two bytes allow a vocabulary of 216 = 65, 536 words, typically more needed
– Huffman coding to use fewer bits for frequent words.

• Probabilities

– typically stored in log format as floats (4 or 8 bytes)
– quantization of probabilities to use even less memory, maybe just 4-8 bits

Chapter 7: Language Models 47

Reducing Vocabulary Size

• For instance: each number is treated as a separate token

• Replace them with a number token num

– but: we want our language model to prefer

plm(I pay 950.00 in May 2007) > plm(I pay 2007 in May 950.00)

– not possible with number token

plm(I pay num in May num) = plm(I pay num in May num)

• Replace each digit (with unique symbol, e.g., @ or 5), retain some distinctions

plm(I pay 555.55 in May 5555) > plm(I pay 5555 in May 555.55)

Chapter 7: Language Models 48

Filtering Irrelevant N-Grams

• We use language model in decoding

– we only produce English words in translation options
– filter language model down to n-grams containing only those words

• Ratio of 5-grams needed to all 5-grams (by sentence length):

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120

ra
tio

 o
f 5

-g
ra

m
s

re
qu

ire
d

(b
ag

-o
f-

w
or

ds
)

sentence length

Chapter 7: Language Models 49

Summary

• Language models: How likely is a string of English words good English?

• N-gram models (Markov assumption)

• Perplexity

• Count smoothing

– add-one, add-α
– deleted estimation
– Good Turing

• Interpolation and backoff

– Good Turing
– Witten-Bell
– Kneser-Ney

• Managing the size of the model

Chapter 7: Language Models 50

